Skip to main content

Advertisement

Log in

Photocatalytic Behavior of Induced Membrane by ZrO2–SnO2 Nanocomposite for Pharmaceutical Wastewater Treatment

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this research, the Polysulfone (PS) membrane was blended with ZrO2–SnO2 nanocomposite as a promising tool for pharmaceutical wastewater to evaluate the impression of the synthesized ZrO2–SnO2 nanocomposite membrane on the efficiency and antibiofouling behaviors. The hydrophilicity, pharmaceutical wastewater permeability, photocatalytic activity and anti-fouling behavior of nanocomposite membranes were studied in details. The outcomes demonstrate that the nanocomposite membranes indicated considerable photocatalytic degradation of pharmaceutical wastewater under UV light irradiation during filtration separation, and nanocomposite membrane fouling could be remarkably diminished after UV irradiation, leading to high pharmaceutical wastewater treatment for long-term performance. The flux of the ZrO2–SnO2 nanocomposite membranes after being irradiated by UV light was increased significantly in comparison with an origin PS membrane. The results of PS0.5 membrane show the best flux of 73.78 l/m2 h increase 50.7% compared to the neat membrane. Likewise, the degradation efficiency, COD removal and flux recovery ratio of this modified membrane was also improved to 90, 57.1 and 68.5%, respectively. The hydrophilicity of PS0.5 membrane under UV irradiation was realized with a decline from 62.9° to 45.97°. Our research indicates that ZrO2–SnO2 nanocomposite membranes with photocatalytic attributes under UV light are an impressive method to resolve the pharmaceutical wastewater fouling problem.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Peyravi M, Jahanshahi M, Alimoradi M et al (2016) Old landfill leachate treatment through multistage process: membrane adsorption bioreactor and nanofitration. Bioprocess Biosyst Eng 39(12):1803–1816

    Article  CAS  Google Scholar 

  2. Peyravi M, Jahanshahi M, Rahimpour A et al (2014) Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration. Chem Eng J 241: 155–166

    Article  CAS  Google Scholar 

  3. Peyravi M, Rahimpour A, Jahanshahi M (2012) Thin film composite membranes with modified polysulfone supports for organic solvent nanofiltration. J Membr Sci 423:225–237

    Article  Google Scholar 

  4. Hoseinpour H, Jahanshahi M, Peyravi M et al (2017) Feasibility study of a novel copolyamide thin film composite membrane assisted by melamine in terms of acid and thermal stability. J Ind Eng Chem 46:244–257

    Article  CAS  Google Scholar 

  5. Peyravi M, Rahimpour A, Jahanshahi M (2015) Developing nanocomposite PI membranes: morphology and performance to glycerol removal at the downstream processing of biodiesel production. J Membr Sci 473:72–84

    Article  CAS  Google Scholar 

  6. Khajouei M, Peyravi M, Jahanshahi M (2017) The potential of nanoparticles for upgrading thin film nanocomposite membranes–a review. J Membr Sci Res 3(1):2–12

    Google Scholar 

  7. Peyravi M, Rahimpour A, Jahanshahi M et al (2012) Tailoring the surface properties of PES ultrafiltration membranes to reduce the fouling resistance using synthesized hydrophilic copolymer. Microporous Mesoporous Mater 160:114–125

    Article  CAS  Google Scholar 

  8. Oller I, Malato S, Sánchez-Pérez J (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166

    Article  CAS  Google Scholar 

  9. Kanakaraju D, Glass BD, Oelgemöller M (2014) Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ Chem Lett 12(1):27–47

    Article  CAS  Google Scholar 

  10. Hoseinpour H, Peyravi M, Nozad A et al (2016) Static and dynamic assessments of polysulfonamide and poly(amide-sulfonamide) acid-stable membranes. J Taiwan Inst Chem Eng 67:453–466

    Article  CAS  Google Scholar 

  11. Darabi RR, Peyravi M, Jahanshahi M et al (2017) Decreasing ICP of forward osmosis (TFN-FO) membrane through modifying PES-Fe3O4 nanocomposite substrate. Korean J Chem Eng 34(8):2311–2324

    Article  CAS  Google Scholar 

  12. Hairom NH, Mohammad AW, Kadhum AA (2014) Effect of various zinc oxide nanoparticles in membrane photocatalytic reactor for congo red dye treatment. Sep Purif Technol 137:74–81

    Article  CAS  Google Scholar 

  13. Ganiyu SO, van Hullebusch ED, Cretin M et al (2015) Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review. Sep Purif Technol 156:891–914

    Article  CAS  Google Scholar 

  14. Mozia S (2010) Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep Purif Technol 73(2):71–91

    Article  CAS  Google Scholar 

  15. Molinari R, Lavorato C, Argurio P (2015) Photocatalytic reduction of acetophenone in membrane reactors under UV and visible light using TiO2 and Pd/TiO2 catalysts. Chem Eng J 274:307–316

    Article  CAS  Google Scholar 

  16. Khan S, Kim J, Sotto A et al (2015) Humic acid fouling in a submerged photocatalytic membrane reactor with binary TiO2–ZrO2 particles. J Ind Eng Chem 21:779–786

    Article  CAS  Google Scholar 

  17. Pouretedal HR, Tofangsazi Z, Keshavarz MH (2012) Photocatalytic activity of mixture of ZrO2/SnO2, ZrO2/CeO2 and SnO2/CeO2 nanoparticles. J Alloy Compd 513:359–364

    Article  CAS  Google Scholar 

  18. Hu L, Chen F, Hu P et al (2016) Hydrothermal synthesis of SnO2/ZnS nanocomposite as a photocatalyst for degradation of Rhodamine B under simulated and natural sunlight. J Mol Catal A 411: 203–213

    Article  CAS  Google Scholar 

  19. Kim H, Yoo HY, Hong S et al (2015) Effects of inorganic oxidants on kinetics and mechanisms of WO3-mediated photocatalytic degradation. Appl Catal B 162:515–523

    Article  CAS  Google Scholar 

  20. Aziz M, Abbas SS, Baharom WR (2013) Size-controlled synthesis of SnO2 nanoparticles by sol–gel method. Mater Lett 91:31–34

    Article  CAS  Google Scholar 

  21. Madaeni SS, Rahimpour A, Barzin J (2005) Preparation of polysulphone ultrafiltration membranes for milk concentration: effect of additives on morphology and performance. Iran Polym J 14(5):421

    CAS  Google Scholar 

  22. Shafaei N, Jahanshahi M, Peyravi M et al (2016) Self-cleaning behavior of nanocomposite membrane induced by photocatalytic WO3 nanoparticles for landfill leachate treatment. Korean J Chem Eng 33(10):2968–2981

    Article  CAS  Google Scholar 

  23. Fan C, Yu S, Qian G et al (2017) Ultrasonic-induced disorder engineering on ZnO, ZrO2, Fe2O3 and SnO2 nanocrystals. RSC Adv 7(30):18785–18792

    Article  Google Scholar 

  24. Zhou Q, Huang J, Wang J et al (2015) Preparation of a reduced graphene oxide/zirconia nanocomposite and its application as a novel lubricant oil additive. RSC Adv 5(111):91802–91812

    Article  CAS  Google Scholar 

  25. Anitha VS, Lekshmy SS, Joy K (2013) Effect of annealing temperature on optical and electrical properties of ZrO2–SnO2 nanocomposite thin films. J Mater Sci 24(11):4340–4345

    CAS  Google Scholar 

  26. Pang R, Li X, Li J et al (2014) Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles. Desalination 332(1):60–66

    Article  CAS  Google Scholar 

  27. Zinadini S, Rostami S, Vatanpour V et al (2017) Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite. J Membr Sci 529:133–141

    Article  CAS  Google Scholar 

  28. Vatanpour V, Shockravi A, Zarrabi H et al (2015) Fabrication and characterization of anti-fouling and anti-bacterial Ag-loaded graphene oxide/polyethersulfone mixed matrix membrane. J Ind Eng Chem 30:342–352

    Article  CAS  Google Scholar 

  29. Guan K (2005) Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surf Coat Technol 191(2):155–160

    Article  CAS  Google Scholar 

  30. Li N, Tian Y, Zhang J et al (2017) Precisely-controlled modification of PVDF membranes with 3D TiO2/ZnO nanolayer: enhanced anti-fouling performance by changing hydrophilicity and photocatalysis under visible light irradiation. J Membr Sci 528:359–368

    Article  CAS  Google Scholar 

  31. Yan L, Hong S, Li ML et al (2009) Application of the Al2O3–PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research. Sep Purif Technol 66(2):347–352

    Article  CAS  Google Scholar 

  32. Mokhtari S, Rahimpour A, Shamsabadi AA et al (2017) Enhancing performance and surface antifouling properties of polysulfone ultrafiltration membranes with salicylate–alumoxane nanoparticles. Appl Surf Sci 393:93–102

    Article  CAS  Google Scholar 

  33. Sarasidis VC, Plakas KV, Patsios SI et al (2014) Investigation of diclofenac degradation in a continuous photo-catalytic membrane reactor. Influence of operating parameters. Chem Eng J 239:299–311

    Article  CAS  Google Scholar 

  34. Molinari R, Pirillo F, Loddo V et al (2006) Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor. Catal Today 118(1):205–213

    Article  CAS  Google Scholar 

  35. Martínez F, López-Muñoz MJ, Aguado J et al (2013) Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants. Water Res 47(15):5647–5658

    Article  Google Scholar 

Download references

Funding

This study was funded by Babol Noshirvani University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Peyravi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6382 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakeritabar, S.F., Jahanshahi, M. & Peyravi, M. Photocatalytic Behavior of Induced Membrane by ZrO2–SnO2 Nanocomposite for Pharmaceutical Wastewater Treatment. Catal Lett 148, 882–893 (2018). https://doi.org/10.1007/s10562-018-2303-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2303-x

Keywords

Navigation