Skip to main content
Log in

Unveiling the Effects of Linker Substitution in Suzuki Coupling with Palladium Nanoparticles in Metal–Organic Frameworks

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The establishment of structure–property relationships in heterogeneous catalysis is of prime importance but remains a formidable challenge. Metal–organic frameworks (MOFs) featuring excellent chemical tunability are emerging as an auspicious platform for the atomic-level control of heterogeneous catalysis. Herein, we encapsulate palladium nanoparticles (Pd NPs) in a series of isoreticular mixed-linker MOFs, and the obtained MOF-Pd NPs catalysts were used to unveil the electronic and steric effects of linker substitution on the activity of these catalysts in the Suzuki–Miyaura cross-coupling reactions. Significantly, m-6,6′-Me2bpy-MOF-Pd exhibits a remarkable enhancement in the activity compared to non-functionalized m-bpy-MOF-Pd and m-4,4′-Me2bpy-MOF-Pd. This study unambiguously demonstrates that the stereoelectronic properties of linker units are crucial to the catalytic activity of nanoparticles encapsulated in MOFs. More interestingly, the trend of activity change is consistent with our previous work on catalytic sites generated in situ from Pd(II) coordinated in MOFs bearing the same functional groups, which suggests that both MOF-Pd NPs and MOF-Pd(II) catalysts generate similar active centers during Suzuki–Miyaura coupling reactions. This work paves a new avenue to the fabrication of advanced and tunable MOF-based catalysts through rational linker engineering.

Graphical Abstract

We encapsulate palladium nanoparticles in a series of isoreticular mixed-linker MOFs, and the obtained Pd-doped MOFs catalysts were used to unveil the electronic and steric effects of linker substitution on the activity of these catalysts in the context of Suzuki–Miyaura cross-coupling reactions. Impressively, m-6,6′-Me2bpy-MOF-Pd exhibits a remarkable enhancement in the activity compared to non-functionalized m-bpy-MOF-Pd and m-4,4′-Me2bpy-MOF-Pd, thus implementing atomic-level controls of heterogeneous catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) Science 341:1230444

    Article  Google Scholar 

  2. Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F (2015) Chem Soc Rev 44:6804–6849

    Article  CAS  Google Scholar 

  3. Dhakshinamoorthy A, Garcia H (2012) Chem Soc Rev 41:5262–5284

    Article  CAS  Google Scholar 

  4. Kim M, Cahill JF, Fei HH, Prather KA, Cohen SM (2012) J Am Chem Soc 134:18082–18088

    Article  CAS  Google Scholar 

  5. Hendon CH, Tiana D, Fontecave M, Sanchez C, D’arras L, Sassoye C, Rozes L, Mellot-Draznieks C, Walsh A (2013) J Am Chem Soc 135:10942–10945

    Article  CAS  Google Scholar 

  6. Burtch NC, Jasuja H, Walton KS (2014) Chem Rev 114:10575–10612

    Article  CAS  Google Scholar 

  7. Bauer CA, Timofeeva TV, Settersten TB, Patterson BD, Liu VH, Simmons BA, Allendorf MD (2007) J Am Chem Soc 129:7136–7144

    Article  CAS  Google Scholar 

  8. Tan JC, Cheetham AK (2011) Chem Soc Rev 40:1059–1080

    Article  CAS  Google Scholar 

  9. Vermoortele F, Vandichel M, Van de Voorde B, Ameloot R, Waroquier M, Van Speybroeck V, De Vos DE (2012) Angew Chem Int Ed 51:4887–4890

    Article  CAS  Google Scholar 

  10. Goh TW, Xiao C, Maligal-Ganesh RV, Li XL, Huang WY (2015) Chem Eng Sci 124:45–51

    Article  CAS  Google Scholar 

  11. Li XL, Goh TW, Li L, Xiao CX, Guo ZY, Zeng XC, Huang WY (2016) ACS Catal 6:3461–3468

    Article  CAS  Google Scholar 

  12. Choi KM, Na K, Somorjai GA, Yaghi OM (2015) J Am Chem Soc 137:7810–7816

    Article  CAS  Google Scholar 

  13. Kotha S, Lahiri K, Kashinath D (2002)Tetrahedron 58:9633–9695

    Article  CAS  Google Scholar 

  14. Maegawa T, Kitamura Y, Sako S, Udzu T, Sakurai A, Tanaka A, Kobayashi Y, Endo K, Bora U, Kurita T (2007) Chem Eur J 13:5937–5943

    Article  CAS  Google Scholar 

  15. Artok L, Bulut H (2004) Tetrahedron Lett 45:3881–3884

    Article  CAS  Google Scholar 

  16. Sahu D, Das P (2015) RSC Adv 5:3512–3520

    Article  CAS  Google Scholar 

  17. Sydnes MO (2017) Catalysts 7:35–49

    Article  Google Scholar 

  18. Yamamoto SI, Kinoshita H, Hashimoto H, Nishina Y (2014)Nanoscale 6:6501–6505

    Article  CAS  Google Scholar 

  19. Hardy JJE, Hubert S, Macquarrie DJ, Wilson AJ (2004) Green Chem 6:53–56

    Article  CAS  Google Scholar 

  20. Chen LY, Rangan S, Li J, Jiang HF, Li YW (2014) Green Chem 16:3978–3985

    Article  CAS  Google Scholar 

  21. Chen LY, Gao Z, Li YW (2015) Catal Today 245:122–128

    Article  CAS  Google Scholar 

  22. Pascanu V, Yao Q, Bermejo Gómez A, Gustafsson M, Yun Y, Wan W, Samain L, Zou XD, Martín-Matute B (2013) Chem Eur J 19:17483–17493

    Article  CAS  Google Scholar 

  23. Yuan BZ, Pan YY, Li YW, Yin B, Jiang HF (2010) Angew Chem Int Ed 49:4054–4058

    Article  CAS  Google Scholar 

  24. Carson F, Pascanu V, Bermejo Gómez A, Zhang Y, Platero -Prats AE, Zou XD, Martín-Matute B (2015) Chem Eur J 21:10896–10902

    Article  CAS  Google Scholar 

  25. Saha D, Sen R, Maity T, Koner S (2013) Langmuir 29:3140–3151

    Article  CAS  Google Scholar 

  26. Pascanu V, Hansen PR, Bermejo Gómez A, Ayats C, Platero-Prats AE, Johansson MJ, Pericàs M, Martín-Matute B (2015) ChemSusChem 8:123–130

    Article  CAS  Google Scholar 

  27. Manna K, Zhang T, Lin WB (2014) J Am Chem Soc 136:6566–6569

    Article  CAS  Google Scholar 

  28. Lim D, Yoon J, Ryu K, Suh M (2012) Angew Chem Int Ed 124:9952–9955

    Article  Google Scholar 

  29. Chen LY, Chen HR, Luque R, Li YW (2014) Chem Sci 5:3708–3714

    Article  CAS  Google Scholar 

  30. Li XL, Guo ZY, Xiao CX, Goh TW, Tesfagaber D, Huang WY (2014) ACS Catal 4:3490–3497

    Article  CAS  Google Scholar 

  31. Li XL, Van Zeeland R, Maligal-Ganesh RV, Pei YC, Power G, Stanley L, Huang WY (2016) ACS Catal 6:6324–6328

    Article  CAS  Google Scholar 

  32. Phan NTS, Van Der Sluys M, Jones CW (2006) Adv Synth Catal 348:609–679

    Article  CAS  Google Scholar 

  33. Elias WC, Signori AM, Zaramello L, Albuquerque BL, de Oliveira DC, Domingos JB (2017) ACS Catal 7:1462–1469

    Article  CAS  Google Scholar 

  34. Balanta A, Godard C, Claver C (2011) Chem Soc Rev 40:4973–4985

    Article  CAS  Google Scholar 

  35. Astruc D (2007) Inorg Chem 46:1884–1894

    Article  CAS  Google Scholar 

  36. Morabito J, Chou LY, Li Z, Manna C, Petroff C, Kyada R, Palomba J, Byers J, Tsung CK (2014) J Am Chem Soc 136:12540–12543

    Article  CAS  Google Scholar 

  37. Sanhes D, Raluy E, Retory S, Saffon N, Teuma E, Gomez M (2010) Dalton Trans 39:9719–9726

    Article  CAS  Google Scholar 

  38. Pacardo DB, Slocik JM, Kirk KC, Naik R, Knecht MR (2011) Nanoscale 3:2194–2201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by NSF Grant CHE-1566445. We also thank Ames Laboratory (Royalty Account) and Iowa State University for startup funds. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. We thank Gordon J. Miller for the use of PXRD in his group.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Levi M. Stanley or Wenyu Huang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1535 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, B., Van Zeeland, R. et al. Unveiling the Effects of Linker Substitution in Suzuki Coupling with Palladium Nanoparticles in Metal–Organic Frameworks. Catal Lett 148, 940–945 (2018). https://doi.org/10.1007/s10562-017-2289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2289-9

Keywords

Navigation