Skip to main content

Advertisement

Log in

Hydroprocessing of Phenanthrene Over Sulfided Fe–W Supported on Modified SBA-15

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Heavy oil hydroprocessing requires catalysts with enhanced mesoporosity and moderate acidity. Mesostructured aluminum modified SBA-15 have been identified as suitable catalytic supports for sulfided phases employed in this process. In this work, a series of SBA-15 based materials were synthesized using hexane as a micellar swelling agent for pore widening. Particularly, the effect of the hexane to Pluronic P123 mass ratio on key properties was assessed. Among the synthesized materials, the one prepared with a hexane: P123 mass ratio of 3.5 showed the best textural properties: BET surface area = 499 m2 × g−1, total pore volume = 1.8 cm3 × g−1, and average pore diameter = 27 nm. The acidity of this material was further modified by grafting aluminum over it. The resulting materials were employed as supports for sulfided Fe–W tested in the hydroprocessing of phenanthrene at 11 MPa and 623 K. Catalysts activity was found to related to the dispersion of the oxide precursor of the active metals which in turn was dependent on Al/Si molar ratio of the supports. Catalysts promoted the formation of 9,10-dihydrophenanthrene, a reaction intermediary in phenanthrene hydroprocessing. The catalyst with an Al/Si molar ratio of 0.04 showed the highest selectivity to this compound. The latter was correlated to a higher content of tetrahedral aluminum in the support. In general, the modifications performed over the SBA-15 support enhanced their pore size distributions and acidity and promoted the selective partial hydrogenation for the central ring of phenanthrene. The findings are important for the search of new catalysts in heavy oil hydroprocessing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Agudelo JL, Mezari B, Hensen EJM, Giraldo SA, Hoyos LJ (2014) On the effect of EDTA treatment on the acidic properties of USY zeolite and its performance in vacuum gas oil hydrocracking. Appl Catal A 488(0):219–230

    Google Scholar 

  2. Al Alwan B, Salley SO, Ng KYS (2014) Hydrocracking of DDGS corn oil over transition metal carbides supported on Al-SBA-15: effect of fractional sum of metal electronegativities. Appl Catal A 485:58–66

    Article  CAS  Google Scholar 

  3. Bellussi G, Rispoli G, Landoni A, Millini R, Molinari D, Montanari E et al (2013) Hydroconversion of heavy residues in slurry reactors: developments and perspectives. J Catal 308:189–200

    Article  CAS  Google Scholar 

  4. Benazzi E, Leite L, Marchal-George N, Toulhoat H, Raybaud P (2003) New insights into parameters controlling the selectivity in hydrocracking reactions. J Catal 217(2):376–387

    Article  CAS  Google Scholar 

  5. Boahene PE, Soni KK, Dalai AK, Adjaye J (2011) Application of different pore diameter SBA-15 supports for heavy gas oil hydrotreatment using FeW catalyst. Appl Catal A 402(1–2):31–40

    Article  CAS  Google Scholar 

  6. Cao Z, Zhang X, Xu C, Duan A, Guo R, Zhao Z et al (2017) The synthesis of Al-SBA-16 materials with a novel method and their catalytic application on hydrogenation for FCC diesel. Energy Fuels 31(1):805–814

    Article  CAS  Google Scholar 

  7. Ramírez J, Gutiérrez-Alejandre A, Sánchez-Minero F, Macías-Alcántara V, Castillo-Villalón P, Oliviero L et al (2012) HDS of 4,6-DMDBT over NiMoP/(x)Ti-SBA-15 catalysts prepared with H3PMo12O40. Energy Fuels 26(2):773–782

    Article  Google Scholar 

  8. Cao L, Kruk M (2011) Facile method to synthesize platelet SBA-15 silica with highly ordered large mesopores. J Colloid Interface Sci 361(2):472–476

    Article  CAS  Google Scholar 

  9. Zhang W-H, Zhang L, Xiu J, Shen Z, Li Y, Ying P et al (2006) Pore size design of ordered mesoporous silicas by controlling micellar properties of triblock copolymer EO20PO70EO20. Microporous Mesoporous Mater 89(1–3):179–185

    Article  CAS  Google Scholar 

  10. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF et al (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279(5350):548–552

    Article  CAS  Google Scholar 

  11. Boahene PE, Soni KK, Dalai AK, Adjaye J (2012) Hydroprocessing of heavy gas oils using FeW/SBA-15 catalysts: experimentals, optimization of metals loading, and kinetics study. Catal Today 207:101–111

    Article  Google Scholar 

  12. Chandra Mouli K, Soni K, Dalai A, Adjaye J (2011) Effect of pore diameter of Ni–Mo/Al-SBA-15 catalysts on the hydrotreating of heavy gas oil. Appl Catal A 404(1–2):21–29

    Article  CAS  Google Scholar 

  13. Ding L, Zheng Y, Zhang Z, Ring Z, Chen J (2007) HDS, HDN, HDA, and hydrocracking of model compounds over Mo-Ni catalysts with various acidities. Appl Catal A 319:25–37

    Article  CAS  Google Scholar 

  14. Chen W-H, Zhao Q, Lin H-P, Yang Y-S, Mou C-Y, Liu S-B (2003) Hydrocracking in Al-MCM-41: diffusion effect. Microporous Mesoporous Mater 66(2–3):209–218

    Article  CAS  Google Scholar 

  15. Dai Y, Zhou YS, Wei Q, Cui QY, Qin Z (2013) Influences of Al modification on the properties and catalytic performance of SBA-15 molecular sieves in hydrocracking. J Fuel Chem Technol 41(12):1502–1506

    CAS  Google Scholar 

  16. Garg S, Soni K, Kumaran GM, Kumar M, Gupta JK, Sharma LD et al (2008) Effect of Zr-SBA-15 support on catalytic functionalities of Mo, CoMo, NiMo hydrotreating catalysts. Catal Today 130(2–4):302–308

    Article  CAS  Google Scholar 

  17. Gómez-Cazalilla M, Infantes-Molina A, Moreno-Tost R, Maireles-Torres PJ, Mérida-Robles J, Rodríguez-Castellón E et al (2009) Al-SBA-15 as a support of catalysts based on chromium sulfide for sulfur removal. Catal Today 143(1–2):137–144

    Article  Google Scholar 

  18. Zhang X, Zhang F, Yan X, Zhang Z, Sun F, Wang Z et al (2007) Hydrocracking of heavy oil using zeolites Y/Al-SBA-15 composites as catalyst supports. J Porous Mater 15(2):145–150

    Article  Google Scholar 

  19. Byambajav E (2003) Hydrocracking of asphaltene with metal catalysts supported on SBA-15. Appl Catal A 252(1):193–204

    Article  CAS  Google Scholar 

  20. Chang J, Tsubaki N, Fujimoto K (2001) Elemental sulfur as an effective promoter for the catalytic hydrocracking of Arabian vacuum residue. Fuel 80(11):1639–1643

    Article  CAS  Google Scholar 

  21. Restrepo-Garcia JR, Baldovino-Medrano VG, Giraldo SA (2016) Improving the selectivity in hydrocracking of phenanthrene over mesoporous Al-SBA-15 based Fe–W catalysts by enhancing mesoporosity and acidity. Appl Catal A 510:98–109

    Article  CAS  Google Scholar 

  22. Byambajav E, Ohtsuka Y (2003) Cracking behavior of asphaltene in the presence of iron catalysts supported on mesoporous molecular sieve with different pore diameters. Fuel 82(13):1571–1577

    Article  CAS  Google Scholar 

  23. Song M, Zou C, Niu G, Zhao D (2012) Improving the hydrothermal stability of mesoporous silica SBA-15 by pre-treatment with (NH4)2SiF6. Chin J Catal 33(1):140–151

    Article  CAS  Google Scholar 

  24. Rouquerol F, Rouquerol J, Sing K Adosrption by powders and porous solids: principles, methodology and applications. Academic Press, Cambridge

  25. Rouquerol J, Llewellyn P, Rouquerol F (2007) Is the BET equation applicable to microporous adsorbents?. 160:49–56

  26. Harkins WD, Jura G (1944) Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid. J Am Chem Soc 66(8):1366–1373

    Article  CAS  Google Scholar 

  27. Contescu C, Jagiello J, Schwarz JA (1995) Proton affinity distributions: a scientific basis for the design and construction of supported metal catalysts. In: Poncelet G, Grange JMBDPAJ P (eds) Studies in surface science and catalysis. vol 91, Elsevier, Amsterdam. pp 237–252

    Google Scholar 

  28. Contescu C, Popa VT, Miller JB, Ko EI, Schwarz JA (1995) Proton affinity distributions of TiO2-SiO2 and ZrO2-SiO2 mixed oxides and their relationship to catalyst activities for 1-butene isomerization. J Catal 157(1):244–258

    Article  CAS  Google Scholar 

  29. Knözinger H, Ratnasamy P (1978) Catalytic aluminas: surface models and characterization of surface sites. Catal Rev 17(1):31–70

    Article  Google Scholar 

  30. ASTM (2017) Standard Practice for Calibration of the Electron Binding-Energy Scale of an X-Ray Photoelectron Spectrometer West Conshohocken: ASTM International, ; [updated 2016; cited 2017 Nov 11]. Available from: http://www.astm.org

  31. Rouxhet PG, Genet MJ (2011) XPS analysis of bio-organic systems. Surf Interface Anal 43(12):1453–1470

    Article  CAS  Google Scholar 

  32. Wagner CD, Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy: a reference book of standard data for use in X-ray photoelectron spectroscopy. Physical Electronics Division, Perkin-Elmer Corp, Eden Prairie

    Google Scholar 

  33. Zhao D, Wan Y (2007) Chapter 8 The synthesis of mesoporous molecular sieves. In: Jiří Čejka HvBAC, Ferdi S (eds) Studies in surface science and catalysis. vol 168, Elsevier, Amsterdam, pp 241–243

    Google Scholar 

  34. Lei Z, Gao L, Shui H, Chen W, Wang Z, Ren S (2011) Hydrotreatment of heavy oil from a direct coal liquefaction process on sulfided Ni–W/SBA-15 catalysts. Fuel Process Technol 92(10):2055–2060

    Article  CAS  Google Scholar 

  35. Gevert BS, Otterstedt J-E (1987) Upgrading of directly liquefied biomass to transportation fuels: catalytic cracking. Biomass 14(3):173–183

    Article  CAS  Google Scholar 

  36. Thommes M, Kaneko K, Neimark Alexander V, Olivier James P, Rodriguez-Reinoso F, Rouquerol J et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051

    Article  CAS  Google Scholar 

  37. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N et al (1994) Recommendations for the characterizations of porous solids (Technical Report). Pure Appl Chem 66(8):1739–1758

    Article  CAS  Google Scholar 

  38. Sharma P, Park SD, Park KT, Park JH, Jang CY, Nam SC et al (2013) Mesoporous cellular foams supported Fe2.0SiW12O40: synthesis, characterization and application to CO2 sorption. Powder Technol 233(0):161–168

    Article  CAS  Google Scholar 

  39. Mora ID, Méndez E, Duarte LJ, Giraldo SA (2014) Effect of support modifications for CoMo/γ-Al2O3 and CoMo/ASA catalysts in the hydrodeoxygenation of guaiacol. Appl Catal A 474:59–68

    Article  CAS  Google Scholar 

  40. Hu W, Luo Q, Su Y, Chen L, Yue Y, Ye C et al (2006) Acid sites in mesoporous Al-SBA-15 material as revealed by solid-state NMR spectroscopy. Microporous Mesoporous Mater 92(1–3):22–30

    Article  CAS  Google Scholar 

  41. Ahmed Ali S, Elias Biswas M, Yoneda T, Miura T, Hamid H, Iwamatsu E et al (1999) A novel catalyst for heavy oil hydrocracking. In: Hideshi H, Kiyoshi O (eds) Studies in surface science and catalysis. vol 121, Elsevier, Amsterdam pp 407–410

    Google Scholar 

  42. Blanchard J, Breysse M, Fajerwerg K, Louis C, Hédoire CE, Sampieri A et al (2005) Acidic zeolites and Al-SBA-15 as supports for sulfide phases: application to hydrotreating reactions. Stud Surf Sci Catal 158:1517–1524

    Article  Google Scholar 

  43. Lualdi M, Di Carlo G, Lögdberg S, Järås S, Boutonnet M, La Parola V et al (2012) Effect of Ti and Al addition via direct synthesis to SBA-15 as support for cobalt based Fischer-Tropsch catalysts. Appl Catal A 443–444(0):76–86

    Article  Google Scholar 

  44. Olivas A, Zepeda TA (2009) Impact of Al and Ti ions on the dispersion and performance of supported NiMo(W)/SBA-15 catalysts in the HDS and HYD reactions. Catal Today 143(1–2):120–125

    Article  CAS  Google Scholar 

  45. Dragoi B, Dumitriu E, Bennici S, Auroux A (2008) Acidic and adsorptive properties of Al modified SBA-15 samples. In: Antoine Gédéon PM, Florence B (eds) Studies in surface science and catalysis. vol 174, Elsevier, Amsterdam, pp 953–956

    Google Scholar 

  46. Koekkoek AJJ, van Veen JAR, Gerrtisen PB, Giltay P, Magusin PCMM., Hensen EJM (2012) Brønsted acidity of Al/SBA-15. Microporous Mesoporous Mater 151:34–43

    Article  CAS  Google Scholar 

  47. Zhu J, Wang J, Sun X, Yang J (2012) Effect of Al-SBA-15 preparation method on the performance of hydrocracking catalyst with Al-SBA-15/USY composite support. Pet Process Petrochem 43(3):28–32

    Google Scholar 

  48. Kouzu M, Kuriki Y, Uchida K, Sakanishi K, Sugimoto Y, Saito I et al (2005) Catalytic hydrocracking of petroleum residue over carbon-supported Nickel–Molybdenum sulfides. Energy Fuels 19(3):725–730

    Article  CAS  Google Scholar 

  49. Chareonpanich M, Zhang Z-G, Tomita A (1996) Hydrocracking of aromatic hydrocarbons over USY-Zeolite. Energy Fuels 10(4):927–931

    Article  CAS  Google Scholar 

  50. Burton AW, Ong K, Rea T, Chan IY (2009) On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater 117(1–2):75–90

    Article  CAS  Google Scholar 

  51. Baldovino-Medrano VG, Minh TL, Van Driessche I, Bruneel E, Gaigneaux EM (2011) Influence of graphite as a shaping agent of Bi molybdate powders on their mechanical, physicochemical, and catalytic properties. Ind Eng Chem Res 50(9):5467–5477

    Article  CAS  Google Scholar 

  52. Baldovino-Medrano VG, Alcázar C, Colomer MT, Moreno R, Gaigneaux EM (2013) Understanding the molecular basics behind catalyst shaping: preparation of suspensions of vanadium–aluminum mixed (hydr)oxides. Appl Catal A 468(Supplement C):190–203

    Article  CAS  Google Scholar 

  53. Pérez Martínez DDJ, Acevedo Quiroga GA, Giraldo Duarte SA, Centeno Hurtado A (2011) Surface characterization of borated γ-alumina by using proton affinity distributions. Rev Facultad de Ingeniería Univ de Antioquia. 2011:23–30

    Google Scholar 

  54. Rotole JA, Sherwood PMA (1998) Gamma-alumina (γ-Al2O3) by XPS. Surf Sci Spectra 5(1):18–24

    Article  CAS  Google Scholar 

  55. Mora-Vergara ID, Hernández Moscoso L, Gaigneaux EM, Giraldo SA, Baldovino-Medrano VG (2017) Hydrodeoxygenation of guaiacol using NiMo and CoMo catalysts supported on alumina modified with potassium. Catal Today

  56. NIST. X-ray Photoelectron Spectroscopy Database MD, Gaithersburg: National Institute of Standards and Technology (2003) [11–11-2017]. Available from: http://srdata.nist.gov/xps/

  57. Cotton FA, Wilkinson G, Murillo CA, Manfred B (1999) Advanced inorganic chemsitry, 6th edn. Wiley, New York

    Google Scholar 

  58. Cazaux J (2000) About the charge compensation of insulating samples in XPS. J Electron Spectrosc Related Phenom 113(1):15–33

    Article  CAS  Google Scholar 

  59. Andreozzi GB, Hålenius U, Skogby H (2001) Spectroscopic active IVFe3+–VIFe3+ clusters in spinel–magnesioferrite solid solution crystals: a potential monitor for ordering in oxide spinels. Phys Chem Miner 28(7):435–444

    Article  CAS  Google Scholar 

  60. Ben Tayeb K, Lamonier C, Lancelor C, Fournier M, Payen E, Bouduelle A et al (2010) Study of the active phase of NiW hydrocracking sulfided catalyts obtained from innovative heteopolyanion based preparation. Catal Today 150:207–212

    Article  CAS  Google Scholar 

  61. Murerll SS, Wachs LL, McVicker IE, Sherman GB, Chan LG (1985) S, et al. Solid state chemistry of tunsgten oxide supported on alumina. In: Grasselli R, ea (eds) In Solid state chemistry in catalysis. American Chemical Society, Washington DC

    Google Scholar 

  62. Klimova T, Reyes J, Gutiérrez O, Lizama L (2008) Novel bifunctional NiMo/Al-SBA-15 catalysts for deep hydrodesulfurization: effect of support Si/Al ratio. Appl Catal A 335(2):159–171

    Article  CAS  Google Scholar 

  63. Zhang D, Zhao J, Zhang Y, Lu X (2016) Catalytic hydrogenation of phenanthrene over NiMo/Al2O3 catalysts as hydrogen storage intermediate. Int J Hydrog Energy 41(27):11675–11681

    Article  CAS  Google Scholar 

  64. Yu Z, Wang Q, Chen L, Deng F (2012) Brønsted/lewis acid sites synergy in H-MCM-22 zeolite studied by 1H and 27Al DQ-MAS NMR spectroscopy. Chin J Catal 33(1):129–139

    Article  CAS  Google Scholar 

  65. Manrique C, Guzmán A, Pérez-Pariente J, Márquez-Álvarez C, Echavarría A (2016) Vacuum gas-oil hydrocracking performance of Beta zeolite obtained by hydrothermal synthesis using carbon nanotubes as mesoporous template. Fuel 182:236–247

    Article  CAS  Google Scholar 

  66. Leite L, Benazzi E, Marchal-George N (2001) Hydrocracking of phenanthrene over bifunctional Pt catalysts. Catal Today 65(2–4):241–247

    Article  CAS  Google Scholar 

  67. Du H, Fairbridge C, Yang H, Ring Z (2005) The chemistry of selective ring-opening catalysts. Appl Catal A 294(1):1–21

    Article  CAS  Google Scholar 

  68. Korre SC, Klein MT, Quann RJ (1997) Hydrocracking of polynuclear aromatic hydrocarbons. Development of rate laws through inhibition studies. Ind Eng Chem Res 36(6):2041–2050

    Article  CAS  Google Scholar 

  69. Benito AM, Martínez MT (1996) Catalytic hydrocracking of an asphaltenic coal residue. Energy Fuels 10(6):1235–1240

    Article  Google Scholar 

  70. Phan-Vu D-H, Tan C-S (2017) Synthesis of phthalate-free plasticizers by hydrogenation in water using RhNi bimetallic catalyst on aluminated SBA-15. RSC Adv 7(30):18178–18188

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was possible due to the financial support given by VIE-UIS in the frame of the project “Diseño de catalizadores para hidrocraqueo de fracciones tipo gasóleo y estudio del efecto de moléculas nitrogenadas, code 1329”. Jonatan R. Restrepo-Garcia acknowledges COLCIENCIAS for the “Joven Investigador 2012” fellowship, Diana P. Garcia, Emerson Barrios and Luis A. Nemojón for conducting some experiments at the laboratory. We especially acknowledge Laboratorio de Rayos-X – UIS under the direction of Prof. J.A. Henao for XRD measurements, Laboratorio de RMN-UIS under the direction of Prof. Daniel Molina for NMR measurements, Laboratorio de Microscopía-UIS under the direction of Prof. C.A Rios for SEM imaging, and Jhonatan Rodriguez-Pereira for XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor G. Baldovino-Medrano.

Ethics declarations

Conflict of interest

The authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Restrepo-Garcia, J.R., Ramírez, G.E. & Baldovino-Medrano, V.G. Hydroprocessing of Phenanthrene Over Sulfided Fe–W Supported on Modified SBA-15. Catal Lett 148, 621–641 (2018). https://doi.org/10.1007/s10562-017-2269-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2269-0

Keywords

Navigation