Skip to main content
Log in

Deep Oxidative Desulfurization of Refractory Sulfur Compounds with Cesium Salts of Mono-Substituted Phosphomolybdate as Efficient Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalytic oxidation desulfurization (ODS) of model oil containing refractory sulfur compounds, dibenzothiophene (DBT), benzothiophene (BT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT), have been investigated with a series of cesium salts of the transition metal mono-substituted phosphomolybdates [PMo11M(H2O)O39]5− (M = Co2+, Ni2+, Zn2+, and Mn2+) as heterogeneous catalysts using H2O2 as the oxidant and acetonitrile as the extractant. The catalysts were characterized by Fourier transform infrared, DRS, scanning electron microscopy and X-ray diffraction. The main factors affecting the desulfurizing efficiency including catalyst dosage, and O/S (H2O2/DBT) molar ratio, temperature and reaction time were explored in detail. The results show that these catalysts are high efficient for sulfur removal of model oil under mild conditions, and CsPMo11Co is the most efficient with the sulfur-removal of 99.8, 92.9 and 85.3% for DBT, 4,6-DMDBT and BT, respectively at 60 °C for 100 min. Two probable reaction mechanisms was proposed for the oxidative desulfurization. Moreover, the catalysts could be recycled and maintained stability and high catalytic activity for consecutive desulfurization.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stanislaus A, Marafi A, Rana MS (2010) Catal Today 153:1–68

    Article  CAS  Google Scholar 

  2. Eßer J, Wasserscheid P, Jess A (2004) Green Chem 6:316–322

    Article  Google Scholar 

  3. Babich IV, Moulijn JA (2003) Fuel 82:607–631

    Article  CAS  Google Scholar 

  4. Francisco M, Arce A, Soto A (2010) Fluid Phase Equilib 294:39–48

    Article  CAS  Google Scholar 

  5. Campos-Martin JM, Capel-Sanchez MC, Fierro JLG (2004) Green Chem 6:557–562

    Article  CAS  Google Scholar 

  6. Rothlisberger A, Prins R (2005) J Catal 235:229–240

    Article  Google Scholar 

  7. Jiang X, Li H, Zhu W, He L, Shu H, Lu J (2009) Fuel 88:431–436

    Article  CAS  Google Scholar 

  8. Xu JH, Zhao S, Ji YC, Song YF (2013) Chem Eur J 19:709–715

    Article  CAS  Google Scholar 

  9. Hansmeier AR, Meindersma GW, Haan AB (2011) Green Chem 13:1907–1913

    Article  CAS  Google Scholar 

  10. Jiang Z, Lu H, Zhang Y, Li C (2011) Chin J Catal 32:707–715

    Article  CAS  Google Scholar 

  11. Song C (2003) Catal Today 86:211–263

    Article  CAS  Google Scholar 

  12. Ribeiro S, Granadeiro CM, Silva P, Paz FAA, Biani FF de, Silvaa LC, Balula SS (2013) Catal Sci Technol 3:2404–2414

    Article  CAS  Google Scholar 

  13. Jones CW (1999).) Applications of hydrogen peroxide and derivatives. Royal Society of Chemistry, Cambridge

    Google Scholar 

  14. Pope MT, Müller A (2002).) Polyoxometalate chemistry from topology via self-assembly to applications. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  15. Hill CL, Prosser-McCartha CM (1995) Coord Chem Rev 143:407–455

    Article  CAS  Google Scholar 

  16. Hill CL (2007) J Mol Catal A 262:1–1

    Article  CAS  Google Scholar 

  17. Kholdeeva OA (2008) In: Gunther MB (ed) Heterogeneous catalysis research progress. Nova Science Publ., New York

    Google Scholar 

  18. Neumann R (1998) Prog Inorg Chem 47:317–370

    CAS  Google Scholar 

  19. Neumann R (2004).) In Backvall J-E (ed) Modern oxidation methods. Wiley-VCH, Weinheim

    Google Scholar 

  20. Faraj M, Hill CL (1987) J Chem Soc Chem Commun 19:1487–1489

    Article  Google Scholar 

  21. Maksimchuk NV, Timofeeva MN, Melgunov MS, Shmakov AN, Chesalov YA, Dybtsev DN, Fedin VP, Kholdeeva OA (2008) J Catal 257:315–323

    Article  CAS  Google Scholar 

  22. Mizuno N, Hirose T, Tateishi M, Iwamoto M (1993) Chem Lett 11:1839–1842

    Article  Google Scholar 

  23. Balula SS, Cunha-Silva L, Santos ICMS, Estrada AC, Fernandes AC, Cavaleiro JAS, Pires J, Freirea C, Cavaleiro AMV (2013) New J Chem 37:2341–2350

    Article  CAS  Google Scholar 

  24. Nogueira LS, Ribeiro S, Granadeiro CM, Pereira E, Feio G, Cunha-Silva L, Balula SS (2014) Dalton Trans 43:9518–9528

    Article  CAS  Google Scholar 

  25. Zhao S, Wang X, Huo M (2010) Appl Catal B 97:127–134

    Article  CAS  Google Scholar 

  26. Nagaraju P, Balaraju M, Mohan Reddy K, Sai-Prasad PS, Lingaiah N (2008) Catal Commun 9:1389–1393

    Article  CAS  Google Scholar 

  27. Nomiya K, Yagishita K, Nemoto Y, Kamataki T (1997) J Mol Catal A 126:43–53

    Article  CAS  Google Scholar 

  28. Yang H, Wu Q, Li J, Dai W, Zhang H, Lu D, Gao S, You W (2013) Appl Catal A 457:21–25

    Article  CAS  Google Scholar 

  29. Chen Ji, Li J, Zhang Y, Gao S (2010) Res Chem Intermed 36:959–968

    Article  CAS  Google Scholar 

  30. Zhang H, Yan R, Yang L, Diao Y, Wang L, Zhang S (2013) Ind Eng Chem Res 52:4484–4490

    Article  CAS  Google Scholar 

  31. Reddy KM, Balaraju M, Sai Prasad PS, Suryanarayana I, Lingaiah N (2007) Catal Lett 119:304–310

    Article  CAS  Google Scholar 

  32. Tundo P, Romanelli GP, Vázquez PG, Aricò F (2010) Catal Commun 11:1181–1184

    Article  CAS  Google Scholar 

  33. Kim H, Jung JC, Park DR, Lee H, Lee J, Lee SH, Baeck SH, Lee KY, Yi J, Song IK (2008) Catal Today 132:58–62

    Article  CAS  Google Scholar 

  34. Khenkin AM, Shimon LJW, Neumann R (2001) Eur J Inorg Chem 2001:789–794

    Article  Google Scholar 

  35. Palermo V, Romanelli GP, Vázquez PG (2013) J Mol Catal A 373:142–150

    Article  CAS  Google Scholar 

  36. Naumann R, Dahan M (1998) Polyhedron 17:3557–3564

    Article  Google Scholar 

  37. Pathan S, Patel A (2013) Appl Catal A 459:59–64

    Article  CAS  Google Scholar 

  38. Pathan S, Patel A (2013) Ind Eng Chem Res 52:11913–11919

    Article  CAS  Google Scholar 

  39. Duarte TAG, Santos ICMS, Simões MMQ, Neves MGPMS, Cavaleiro AMV, Cavaleiro JAS (2014) Catal Lett 144:104–111

    Article  CAS  Google Scholar 

  40. Dębek R, Radlik M, Motak M, Galvez ME, Turek W, Costa PD, Grzybek T (2015) Catal Today 259:59–65

    Article  Google Scholar 

  41. Hsein WU (1920) J Bio Chem 43:189–220

    Google Scholar 

  42. Popa A, Sasca V, Verdes O, Holclajtner-Antunović I (2015) React Kinet Mech Catal 115:355–375

    Article  CAS  Google Scholar 

  43. Tourné CM, Tourné GF, Malik SA, Weakley TJR (1970) J Inorg Nucl Chem 32:3875–3890

    Article  Google Scholar 

  44. Mazari T, Marchal CR, Hocine S, Salhi N, Rabia C (2009) J Nat Gas Chem 18:319–324

    Article  CAS  Google Scholar 

  45. Patel A, Pathan S (2012) J Coord Chem 65:3122–3132

    Article  CAS  Google Scholar 

  46. Combs -Walker LA, Hill CL (1991) Inorg Chem 30:4016–4026

    Article  CAS  Google Scholar 

  47. Zhang J, Wang A, Li X, Ma X (2011) J Catal 279:269–275

    Article  CAS  Google Scholar 

  48. Ribeiro SO, Julião D, Luís C-S, Domingues VF, Valença R, Ribeiro JC, Castro B de, Balula SS (2016) Fuel 166:268–275

    Article  CAS  Google Scholar 

  49. Wu N, Li B, Liu Z, Han C (2014) Catal Commun 46:156–160

    Article  CAS  Google Scholar 

  50. Wang J, Yan L, Li G, Wang X, Ding Y, Suo J (2005) Tetrahedron Lett 46:7023–7027

    Article  CAS  Google Scholar 

  51. Ingle RH, Raj NKK (2008) J Mol Catal A 294:8–13

    Article  CAS  Google Scholar 

  52. Hu J, Li K, Li W, Ma F, Guo Y (2009) Appl Catal A 364:211–220

    Article  CAS  Google Scholar 

  53. García-Gutiérrez JL, Fuentes GA, Hernández-Terán ME, Murrieta F, Navarrete J, Jiménez-Cruz F (2006) Appl Catal A 305:15–20

    Article  Google Scholar 

  54. Otsuki S, Nonaka T, Takashima N, Qian WH, Ishihara A, Imai Tand Kabe T (2000) Energy Fuels 14:1232–1239

    Article  CAS  Google Scholar 

  55. Yan X, Mei P, Xiong L, Gao L, Yang Q, Gong L (2013) Catal Sci Technol 3:1985–1992

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21373159 and 21673176) and the National Found for Fostering Talents of Basic Science (NFFTBS J1210057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganglin Xue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4661 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Gu, Y., Dong, X. et al. Deep Oxidative Desulfurization of Refractory Sulfur Compounds with Cesium Salts of Mono-Substituted Phosphomolybdate as Efficient Catalyst. Catal Lett 147, 1811–1819 (2017). https://doi.org/10.1007/s10562-017-2078-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2078-5

Keywords

Navigation