Skip to main content
Log in

Hydroxyl Functionalized Lewis Acidic Ionic Liquid on Silica: An Efficient Catalyst for the C-3 Friedel-Crafts Benzylation of Indoles with Benzyl Alcohols

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, a hydroxyl functionalized Lewis acidic ionic liquid on silica is found to be an efficient heterogeneous catalyst for the C-3 Friedel-Crafts benzylation of indoles with different benzyl alcohols as benzylation agents under mild conditions. This catalytic system benefits from simple operation, work-up and reutilization procedures, wide substrate tolerance, low cost, high catalytic activity and excellent chemo-selectivity. The hybrid combination of hydroxyl functionalized ionic liquid and silica through the formation of hydrogen bond endows this catalyst with high stability in the Friedel-Crafts reaction system, and the catalyst could be easily recycled and reutilized.

Graphical Abstract

A hydroxyl functionalized Lewis acid ionic liquid supported on silica was found to be an efficient catalyst for the C-3 Friedel-Crafts benzylation reaction of iodole with alcohols. This catalyst benefits from low cost, feasible preparation and reutilization, high catalytic activity and selectivity, and the operation and work-up procedures are very simple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sundberg RJ (1970) The chemistry of indoles, 189. Academic Press, New York, p 176–182

    Google Scholar 

  2. Shiri M, Zolfigol MA, Kruger GH, Tanbakouchian Z (2010) Chem Rev 110:2250–2293

    Article  CAS  Google Scholar 

  3. Bandini M, Eichholzer A (2009) Angew Chem Int Ed 48:9608–9644

    Article  Google Scholar 

  4. Sunaba H, Kamata K, Mizuno N 2014 Chemcatchem 6:2333–2338

    Article  CAS  Google Scholar 

  5. Wang Z-X, Kochanowska-Karamyan AJ, Hamann MT (2010) Chem Rev 110:4489–4497

    Article  Google Scholar 

  6. Contractor R, Samudio IJ, Estrov Z, Harris D, McCubrey JA, Safe SH, Andreeff M, Konopleva M (2005) Cancer Res 65:2890–2898

    Article  CAS  Google Scholar 

  7. Wu X, See JWT, Xu K, Hirao H, Roger J, Hierso JC, Zhou JS (2014) Angew Chem Int Ed 53:13573–13577

    Article  CAS  Google Scholar 

  8. Khalil A, Fihri A, Jouiad M, Hashaikeh R (2014) Tetrahedron Lett 55:5973–5975

    Article  CAS  Google Scholar 

  9. Lewis JC, Bergman RG, Ellman JA (2008) Acc Chem Res 41:1013–1025

    Article  CAS  Google Scholar 

  10. Hamid MHSA, Allen CL, Lamb GW, Maxwell AC, Maytum HC, Watson AJA, Williams JMJ (2009) J Am Chem Soc 131:1766–1774

    Article  CAS  Google Scholar 

  11. Dobereiner GE, Crabtree RH (2010) Chem Rev 110:681–703

    Article  CAS  Google Scholar 

  12. Pingen D, MKller C, Vogt D (2010) Angew Chem Int Ed 49:8130–8133

    Article  CAS  Google Scholar 

  13. Imm S, Bahn S, Neubert L (2010) Angew Chem Int Ed 49:8126–8129

    Article  CAS  Google Scholar 

  14. Savara A, Chan-Thaw CE, Rossetti I, Villa A, Prati L (2014) Chemcatchem 6:3464–3473

    Article  CAS  Google Scholar 

  15. Koppolu SR, Naveen N, Balamurugan R (2014) J Org Chem 79:6069–6078

    Article  CAS  Google Scholar 

  16. Huo C, Sun C, Wang C, Jia X, Chang W (2013) ACS Sustainable Chem Eng 1:549–553

    Article  CAS  Google Scholar 

  17. Naredla RR, Klumpp DA (2013) Chem Rev 113:6905–6948

    Article  CAS  Google Scholar 

  18. Baeza A, Najera C (2014) Synthesis 46:25–34

    Article  Google Scholar 

  19. Kumar R, Eycken EV (2013) Chem Soc Rev 42:1121–1146

    Article  CAS  Google Scholar 

  20. Bandini M, Bottoni A, Chiarucci M, Cera G, Miscione GP (2012) J Am Chem Soc 134:20690–20700

    Article  CAS  Google Scholar 

  21. Bandini M, Eichholzer A (2009) Angew Chem Int Ed 48:9533–9537

    Article  CAS  Google Scholar 

  22. Hikawa H, Suzuki H, Azumaya I (2013) J Org Chem 78:12128–12135

    Article  CAS  Google Scholar 

  23. Yasuda M, Somyo T, Baba A (2006) Angew Chem Int Ed 45:793–796

    Article  CAS  Google Scholar 

  24. Fan GP, Liu Z, Wang GW (2013) Green Chem 15:1659–1664

    Article  CAS  Google Scholar 

  25. Jana U, Maiti S, Biswas S (2007) Tetrahedron Lett 48:7160–7163

    Article  CAS  Google Scholar 

  26. Das D, Roy S (2013) Adv Synth Catal 355:1308–1314

    Article  CAS  Google Scholar 

  27. Hikawa H, Suzuki H, Yokoyama Y, Azumaya I (2013) Catalysts 3:486–500

    Article  CAS  Google Scholar 

  28. Hikawa H, Yokoyama Y (2013) RSC Adv 3:1061–1064

    Article  CAS  Google Scholar 

  29. Kimura M, Futamata M, Mukai R, Tamaru Y (2005) J Am Chem Soc 127:4592–4593

    Article  CAS  Google Scholar 

  30. Siddiki SMAH, Kon K, Shimizu K (2013) Chem Eur J 19:14416–14419

    Article  CAS  Google Scholar 

  31. Tao YS, Wang BM, Zhao JF, Song YM, Qu LH, Qu JP (2012) J Org Chem 77:2942–2946

    Article  CAS  Google Scholar 

  32. Zaitsev AB, Gruber S, Pregosin PS (2007) Chem Commun 44:4692–4693

    Article  Google Scholar 

  33. Zaitsev AB, Gruber S, Pluss PA, Pregosin PS, Veiros LF, Worle M (2008) J Am Chem Soc 130:11604–11605

    Article  CAS  Google Scholar 

  34. Baehn S, Imm S, Mevius K (2010) Chem Eur J 16:3590–3593

    Article  CAS  Google Scholar 

  35. Han F, Yang L, Li Z, Xia CG (2012) Adv Synth Catal 354:1052–1060

    Article  CAS  Google Scholar 

  36. Minakata S, Komatsu M (2009) Chem Rev 109:711–724

    Article  CAS  Google Scholar 

  37. Mehnert CP, Cook RA, Dispenziere NC, Afeworki M (2002) J Am Chem Soc 124:12932–12933

    Article  CAS  Google Scholar 

  38. Huang J, Jiang T, Gao HX, Han BX, Wu WZ, Chang YH, Zhao GY (2004) Angew Chem Int Ed 43:1397–1399

    Article  CAS  Google Scholar 

  39. Dragoni D, Manini N, Ballone P (2012) Chemphyschem 13:1772–1780

    Article  CAS  Google Scholar 

  40. Perkin S (2012) Phys Chem Chem Phys 14:5052–5062

    Article  CAS  Google Scholar 

  41. Ballone P, Del Popolo MG, Vovio S, Podesta A, Milani P, Manini N (2012) Phys Chem Chem Phys 14:2475–2482

    Article  CAS  Google Scholar 

  42. Chrobok A, Baj S, Pudlo W, Jarzebski A (2010) Appl Catal A 389:179–185

    Article  CAS  Google Scholar 

  43. Zhang P, Wu TB, Han BX (2014) Adv Mater 26:6810–6827

    Article  CAS  Google Scholar 

  44. Jakuttis M, Schönweiz A, Werner S, Franke R, Wiese KD, Haumann M, Wasserscheid P (2011) Angew Chem Int Ed 50:4492–4495

    Article  CAS  Google Scholar 

  45. Fehrmann R, Riisager A, Haumann M (2014) Supported ionic liquids. Wiley, Weinheim, p 1-496

    Book  Google Scholar 

  46. Aprile C, Giacalone F, Agrigento P, Liotta LF, Martens JA, Pescarmona PP, Gruttadauria M (2011) Chemsuschem 4:1830–1837

    Article  CAS  Google Scholar 

  47. Meyer C, Hager V, Schwieger W, Wasserscheid P (2012) J Catal 292:157–165

    Article  CAS  Google Scholar 

  48. Zhu AL, Li LJ, Wang JJ, Zhuo KL (2011) Green Chem 13:1244–1250

    Article  CAS  Google Scholar 

  49. Doetterl M, Alt HG (2011) Chemcatchem 3:1799–1804

    Article  CAS  Google Scholar 

  50. Deshmukh KM, Qureshi ZS, Dhake KP, Bhanage BM (2010) Catal Commun 12:207–211

    Article  CAS  Google Scholar 

  51. Zimanis A, Katkevica S, Mekss P (2009) Catal Commun 10:614–619

    Article  Google Scholar 

  52. Hu SQ, Zhang ZF, Song JL, Zhou YX, Han BX (2009) Green Chem 11:1746–1749

    Article  CAS  Google Scholar 

  53. Morales RC, Tambyrajah V, Jenkins PR, Davies DL, Abbott AP (2004) Chem Commun 2:158–159

    Article  Google Scholar 

  54. McClelland RA, Kanagasabapathy VM, Steenken S (1988) J Am Chem Soc 110:6913–6914

    Article  CAS  Google Scholar 

  55. Avalos M, Babiano R, Cintas P, Jimenez JL, Palacios JC (2006) Angew Chem Int Ed 45:3904–3908

    Article  CAS  Google Scholar 

  56. Hertl W, Hair ML (1968) J Phys Chem 72:4676–4682

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21373079) and Program for Science & Technology Innovation Talents in Universities of Henan Province (14HASTIT015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianji Wang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1431 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, A., Feng, W., Li, L. et al. Hydroxyl Functionalized Lewis Acidic Ionic Liquid on Silica: An Efficient Catalyst for the C-3 Friedel-Crafts Benzylation of Indoles with Benzyl Alcohols. Catal Lett 147, 261–268 (2017). https://doi.org/10.1007/s10562-016-1918-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1918-z

Keywords

Navigation