Skip to main content
Log in

Promotional Effects of In on Non-Oxidative Methane Transformation Over Mo-ZSM-5

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We present a new class of catalysts, InMo-ZSM-5, which can be prepared by indium impregnation of Mo-ZSM-5. The incorporation of indium dramatically decreases coke formation during methane dehydroaromatization. The benzene and C2 hydrocarbons selectivity among total hydrocarbons over InMo-ZSM-5 remains comparable to that of Mo-ZSM-5 despite reduced methane conversion due to decreased coke formation. We found 1 wt% indium to be optimal loading for reducing coke selectivity to half that of Mo-ZSM-5. Characterization methods were not helpful in discerning the interaction of In with Mo but experiments with bimetallic 1In2Mo-ZSM-5 and mechanical mixture 1In+2Mo-ZSM-5 suggest that In and Mo need to be in close proximity to suppress coke formation. This is supported by temperature programmed reduction experiments which show that In incorporation leads to lower Mo reduction temperature in In2Mo-ZMS-5.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. BP Statistical Review of World Energy 2013. Document retrieved from: http://www.bp.com on 16th of October, 2014.

  2. Rostrup-Nielsen JR (1993) Catal Today 18:305–324

    Article  Google Scholar 

  3. Spivey J, Hutchings G (2014) Chem Soc Rev 43:792–803 (and references therein)

    Article  CAS  Google Scholar 

  4. Wang L, Tao L, Xie M, Xu G, Huang J, Xu Y (1993) Catal Lett 21:35–41

    Article  CAS  Google Scholar 

  5. Majhi S, Mohanty P, Wang H, Pant KK (2013) J. Energy Chem 22:543–554 (and references therein)

    Article  CAS  Google Scholar 

  6. Ismagilove Z, Matus E, Tsikoza L (2008) Energy Environ Sci 1:526–541 (and references therein)

    Article  Google Scholar 

  7. Zeng J-L, Xiong Z-T, Zhang H-B, Lin G-D, Tsai KR (1998) Catal Lett 53:119–124

    Article  CAS  Google Scholar 

  8. Weckhuysen BM, Wang D, Rosynek MP, Lunsford JH (1998) J Catal 175:338–346

    Article  CAS  Google Scholar 

  9. Wang H, Liu Z, Shen J, Liu H, Zhangn J (2005) Catal Commmun 6:343–346

    Article  CAS  Google Scholar 

  10. Lezcano-Gonzalez I, Oord R, Rovezzi M, Glatzel P, Botchway SW, Weckhuysen BM, Beale, AM (2016) Angew Chem Inter Ed 55:5215–5219

    Article  CAS  Google Scholar 

  11. Tempelman CHL, Hensen EJM (2015) App Cata B 176: 731–739

    Article  Google Scholar 

  12. Xu YB, Wang JD, Suzuki Y, Zhang ZG (2012) Catal Today 185:41–46

    Article  CAS  Google Scholar 

  13. Liu S, Dong Q, Ohnishi R, Ichikawa M (1997) Chem Commun 1455–1456

  14. Chen L, Lin L, Xu Z, Zhang T, Li X (1996) Catal Lett 39:169–172

    Article  CAS  Google Scholar 

  15. Kojima R, Kikuchi S, Ma H, Bai J, Ichikawa M (2006) Catal Lett 110:15–21

    Article  CAS  Google Scholar 

  16. Shu Y, Xu Y, Wong S-T, Wang L, Guo X (1997) J Catal 170:11–19

    Article  CAS  Google Scholar 

  17. Liu B, Yang Y, Sayari A (2001) Appl Catal A 214:95–102

    Article  CAS  Google Scholar 

  18. Al-Dughaither AS, de Lasa H (2014) Ind Eng Chem Res 53:15303–15316

    Article  CAS  Google Scholar 

  19. Liu Q, Lu W, Tang J, Lin J, Fang JY (2005) J Am Chem Soc 127:5276–5277

    Article  CAS  Google Scholar 

  20. O’Brien MG, Beale AM, Jacques SDM, Buslabs T, Honimaki V, Weckhuysen BM (2009) J Phys Chem C 113:4890–4897

    Article  Google Scholar 

  21. Xu Y, Shu Y, Liu S, Huang J, Guo X (1995) Catal Lett 35:233–243

    Article  CAS  Google Scholar 

  22. Williams CC, Ekerdt JG, Jehng J-M, Hardcastle FD, Turek AM, Wachs IE (1991) J Phys Chem 95:8781–8791

    Article  CAS  Google Scholar 

  23. Berengue OM, Rodrigues AD, Dalmaschio CJ, Lanfredi AJC, Leite ER, Chiquito AJ (2010) J Phys D: Appl Phys 43:040501

    Article  Google Scholar 

  24. Du J, Yang M, Cha SN, Rhen D, Kang M, Kang DJ (2008) Cryst Growth Des 8:2312–2317

    Article  CAS  Google Scholar 

  25. Yang X, Wu Z, Moses-Debusk M, Mullins DR, Mahurin SM, Geiger RA, Kidder M, Narula CK (2012) J Phys Chem C 116:23322–23331

    Article  CAS  Google Scholar 

  26. Borry III RW, Lu EC, Kim YH, Iglesia E (1997) Non-oxidative conversion of methane with continuous hydrogen removal, US Dept. of Energy/NETL, Morgantown, WV, Contract DE-AC03–76SF00098

  27. Jiang H, Wang L, Cui W, Xu Y (1999) Catal Lett 57:95–102

    Article  CAS  Google Scholar 

  28. Mihalyi RM, Schay Z, Szegedi A (2009) Catal Today 143:253–260

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy. Authors thank Andrew Lepore for critical reading of manuscript. We also thank Shreya Celly, a summer undergraduate intern, for assistance with some of the experiments. Raman microscopy work is supported by Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy. TPR work was supported by US Department of Energy, Office of Science, Basic Energy of Science, Chemical Science, Geoscience and Bioscience Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaitanya K. Narula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Kidder, M., Ruther, R.E. et al. Promotional Effects of In on Non-Oxidative Methane Transformation Over Mo-ZSM-5. Catal Lett 146, 1903–1909 (2016). https://doi.org/10.1007/s10562-016-1831-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1831-5

Keywords

Navigation