Skip to main content
Log in

Dry Reforming of Methane for Syngas Production Over Well-Dispersed Mesoporous NiCe0.5Zr0.5O3 with Ni Nanoparticles Immobilized

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ni incorporated catalysts with different ratios of Ce/Zr were prepared via a one-pot surfactant assisted Pechini method, and dry reforming of methane was used to evaluate their performances. The prepared catalysts were characterized by nitrogen adsorption–desorption, XRD, SEM, TEM and TGA. The nitrogen physisorption analysis witnessed the distinctive mesoporosity of NiCe0.5Zr0.5O3. The TEM observation confirmed a homogeneous dispersion of NiO nanoparticles within the mesopores, and the XRD presented a high crystallinity of NiCe0.5Zr0.5O3 within relatively smaller particle size. After 6 h dry reforming of methane in a fixed-bed reactor, the minimal carbon deposition was detected on the used NiCe0.5Zr0.5O3 among the NiCexZr1-xO3 (x = 0.1, 0.5, 0.9) catalysts, and XRD result also indicates nano-sized NiO particle on the fresh catalyst will be of great benefit to the resistance of carbon formation. The mesoporous structure of NiCe0.5Zr0.5O3 was achieved at Ce/Zr = 1:1 and NiO particles incorporated in the pore were also clearly observed based on the characterization results. The catalytic evaluation experiments prove its remarkable initial activity (CH4 94.0 & CO2 97.2 %), minimal carbon formation, and outstanding catalytic performance at different WHSVs.

Graphical Abstract

A series of NiCexZr1-xO3 catalysts were prepared and the optimal synthesis ratio of Ce/Zr is 1:1 based on the characterization results. NiCe0.5Zr0.5O3 presents a few features such as mesoporous structure, highly dispersed NiO, large surface area, and small crystallized sizes. DRM reaction experiments also prove NiCe0.5Zr0.5O3 has remarkable catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cheng D, Zhu X, Ben YF, He L, Cui L, Liu CJ (2006) Catal. Today. 115:205

    Article  CAS  Google Scholar 

  2. Gallego GS, Batiot-Dupeyrat C, Barrault J, Florez E, Mondragon F (2008) Appl Catal A 334:251

    Article  CAS  Google Scholar 

  3. Wang N, Chu W, Zhang T, Zhao XS (2012) Int J Hydrogen Energy 37:19

    Article  Google Scholar 

  4. Luisetto I, Tuti S, Battocchio C, Lo Mastro S, Sodo A (2015) Appl Catal 500:12

    Article  CAS  Google Scholar 

  5. Osaki T, Mori T (2001) J Catal 204:89

    Article  CAS  Google Scholar 

  6. Wilams SM, Noronha FB, Fendley G, Resasco DE (2000) J Catal 194:240

    Article  Google Scholar 

  7. Sadykov VA, Gubanova EL, Sazonova NN, Pokrovskaya SA, Chumakova NA, Mezentseva NV, Bobin AS, Gulyaev RV, Ishchenko AV, Mirodatos C (2011) Catal Today 171:140

    Article  CAS  Google Scholar 

  8. Chen JX, Yao CC, Zhao YQ, Jia PH (2010) Int J Hydrogen Energy 35:1630

    Article  CAS  Google Scholar 

  9. Roh HS, Eum IH, Jeong DW (2012) R. Energy 42:212

    Article  CAS  Google Scholar 

  10. Kambolis A, Matralis H, Trovarelli A, Papadopoulou C (2010) Appl Catal A377:16

    Article  Google Scholar 

  11. Corthals S, Nederkassel JV, Geboers J, Hendrik D, Winne J, Van N, Bart M, Bert S, Pierre J (2008) Catal Today 138:28

    Article  CAS  Google Scholar 

  12. Alipour Z, Rezaei M, Meshkani F (2014) J. Energy. Chem 23:633

    Article  Google Scholar 

  13. Potdar HS, Roh HS, Jun KW, Ji M, Liu ZW (2002) Catal Lett 84:95

    Article  CAS  Google Scholar 

  14. Alipour Z, Rezaei M, Meshkani F (2014) Fuel 129:197

    Article  CAS  Google Scholar 

  15. Zhu JQ, Peng XX, Yao L, Shen J, Tong DM, Hu CW (2011) Int J Hydrogen Energy 36:7094

    Article  CAS  Google Scholar 

  16. Wang R, Liu XB, Chen YX, Li WZ, Xu HY (2007) Chin J Catal 28:865

    Article  Google Scholar 

  17. Fakeeha AH, AL-FATESH AS, ABASAEED AE (2013) Stabilities of zeolite-supported Ni catalysts for dry reforming of methane. Chinese Journal of Catalysis 34(4):764–768

    Article  CAS  Google Scholar 

  18. Albarazi A, Beaunier P, Da Costa P (2013) Int J Hydrogen Energy 38:127

    Article  CAS  Google Scholar 

  19. Zhang YW, Wang R, Ling XD, Wang ZH, Liu JZ, Zhou JH, Cen KF (2014) Int J Hydrogen Energy 39:10853

    Article  CAS  Google Scholar 

  20. Horváth A, Stefler G, Geszti O, Kienneman A, Pietraszek A, Guczi L (2011) Catal Today 160:102

    Article  Google Scholar 

  21. Luisetto I, Tuti S, Di Bartolomeo E (2012) Int J Hydrogen Energy 37:1592

    Article  Google Scholar 

  22. Ocsachoque M, Bengoa J, Gazzoli D, González MG (2000) Catal Lett 141:1643

    Article  Google Scholar 

  23. Zhang Ql, Xu LS, Ning P, Gu JJ, Guan QQ(2014) Appl Sur Sci 317:955 38:127

  24. Rezaei M, Alavi SM, Sahebdelfar S, Yan ZF (2009) Scripta Mater 61:173

    Article  CAS  Google Scholar 

  25. Deng QF, Ren TZ, Bao A, Liu YP, Yuan ZY (2014) J J Ind Eng Chem 20:3303

    Article  CAS  Google Scholar 

  26. Leofanti G,Padovan M, Tozzola G, Venturelli B. (1998) Catal Today 41:207. Bitter JH, Seshan K, Lercher JA(1998) J Catal 176:93–101

  27. Klug HP, Alexander LE. X-ray diffraction procedures for polycrystalline and amorphous materials; 1974

  28. Zhang XP, Zhang QD, Tsubaki NT, Han YS, Han YZ (2015) Fuel 147:243

    Article  CAS  Google Scholar 

  29. Zheng Y, Wei YG, Li K, Zhu X, Wang H, Wang YH (2014) Int J Hydrogen Energy 39:13361

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supported by the National Natural Science Foundation of China (21276209); Major Technological Innovation Projects of Shaanxi Province (2012ZKC03-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, W., Wang, Y., Zou, Y. et al. Dry Reforming of Methane for Syngas Production Over Well-Dispersed Mesoporous NiCe0.5Zr0.5O3 with Ni Nanoparticles Immobilized. Catal Lett 146, 1663–1673 (2016). https://doi.org/10.1007/s10562-016-1791-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1791-9

Keywords

Navigation