Skip to main content
Log in

Synthesis of Monometallic Ru/TiO2 Catalysts and Selective Hydrogenation of CO2 to Formic Acid in Ionic Liquid

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We successfully synthesized user friendly, stable, agglomeration free monometallic Ru/Ti-x catalyst for ionic liquid mediated CO2 hydrogenation reaction. Two well defined methods (impregnation and deposition–precipitation) were used to prepare 2 wt% Ru/Ti 1–10 catalysts. Advance analytical techniques were applied for the characterization of Ru/Ti-x catalytic systems. A series of functionalized ionic liquids were synthesized and applied as a reaction medium not only for hydrogenation reaction but also as absorbent to solubilize CO2 gas and to anchor the formic acid (hydrogenation product). Such advance application of ionic liquid mediated Ru/Ti-x catalytic system offered the hydrogenation reaction in a more optimized way to achieve maximum selectivity (high TON/TOF value of formic acid) with the added advantage of eight times catalyst recycling.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pan M, Brush AJ, Pozun ZD, Ham HC, Yu W-Y, Henkelman G, Hwanga GS, Mullins CB (2013) Chem Soc Rev 42:5002–5013

    Article  CAS  Google Scholar 

  2. Nerozzi F (2012) Platin Metal Rev 56:236

    Article  CAS  Google Scholar 

  3. Irfan M, Glasnov TN, Kappe CO (2011) ChemSusChem 4:300

    Article  CAS  Google Scholar 

  4. Schmidt O (1933) Chem Rev 12:363

    Article  CAS  Google Scholar 

  5. Navalikhina MD, Krylov OV (1998) Heterogeneous hydrogenation catalysts. Russ Chem Rev 67:587

    Article  Google Scholar 

  6. Pinna F (1998) Catal Today 41:129

    Article  CAS  Google Scholar 

  7. Clapham B, Reger TS, Janda KM (2001) Tetrahedron 57:4637

    Article  CAS  Google Scholar 

  8. Brunel D, Blanc AC, Galarneau A, Fajula F (2002) Catal Today 73:139

    Article  CAS  Google Scholar 

  9. Taguchi A, Schüth F (2005) Microporous Mesoporous Mater 77:1

    Article  CAS  Google Scholar 

  10. Ono Y (2003) J Catal 216:406

    Article  CAS  Google Scholar 

  11. Rao CNR, Kulkarni GU, Thomasa PJ, Edwardsb PP (2000) Chem Soc Rev 29:27

    Article  CAS  Google Scholar 

  12. Mody VV, Siwale R, Singh A, Mody HR (2010) J Pharm Bioallied Sci 2:282

    Article  CAS  Google Scholar 

  13. Campelo JM, Luna D, Luque R, Marinas JM, Romero AA (2009) ChemSusChem 2:18

    Article  CAS  Google Scholar 

  14. Zahmakıran M, Ozkar S (2011) Nanoscale 1:3462

    Article  Google Scholar 

  15. Cuenya BR (2010) Thin Solid Films 518:3127

    Article  CAS  Google Scholar 

  16. Costaa NJS, Rossi LM (2012) Nanoscale 4:5826

    Article  Google Scholar 

  17. Campelo JM, Luna D, Luque R, Marinas JM, Romero AA (2009) ChemSusChem 2:18

    Article  CAS  Google Scholar 

  18. Kim BH, Hackett MJ, Park J, Hyeon T (2014) Chem Mater 26:59

    Article  CAS  Google Scholar 

  19. Micheli L (1984) Am Cream Soc Bull 54:694

    Google Scholar 

  20. Siefering KL, Griffin GL (1990) J Nanosci Nantechnol 14:3137

    Google Scholar 

  21. Kumar VP, Harikrishna Y, Nagaraju N, Chary KVR (2014) Indian J Chem 53A:516

    CAS  Google Scholar 

  22. Zhao J, Ma L, Xu L-X, Feng F, Li X-N (2014) Chin Chem Lett 25:1137

    Article  CAS  Google Scholar 

  23. Bagheri S, Julkapli N, Bee Abd Hamid HS (2014) Sci World J 2014:1

    Article  Google Scholar 

  24. Ratti R (2014) Adv Chem 2014:1

    Article  Google Scholar 

  25. Santos E, Albob J, Irabien A (2014) RSC Adv 4:40008

    Article  CAS  Google Scholar 

  26. Scholten JD, Leal BC, Dupont J (2012) ACS Catal 2:184

    Article  CAS  Google Scholar 

  27. Sánchez LMG, Meindersma GW, Haan ABD (2007) Chem Eng Res Des 85:31

    Article  Google Scholar 

  28. Sánchez LMG, Meindersma GW, Haan ABD (2011) Chem Eng J 166:1104

    Article  Google Scholar 

  29. Rahmana MH, Siajb M, Larachi F (2010) Chem Eng Process 49:313

    Article  Google Scholar 

  30. Calleja ET, Skinner J, Tauste DG (2013) J Chem 2013:1

    Article  Google Scholar 

  31. Srivastava V (2014) Catal Lett 144:1745

    Article  CAS  Google Scholar 

  32. Srivastava V (2014) Catal Lett 144:2221

    Article  CAS  Google Scholar 

  33. Zhang Z, Xie Y, Li W, Hu S, Song J, Jiang J, Han B (2007) Angew Chem Int Ed 47:1127

    Article  Google Scholar 

  34. Yang Z-Z, He L-N (2014) Beilstein J Org Chem 10:1959

    Article  CAS  Google Scholar 

  35. Abidoyea LK, Khudaidaa KJ, Das DB (2015) Crit Rev Environ Sci Technol 45:1105

    Article  Google Scholar 

  36. Huff CA, Sanford MS (2011) J Am Chem Soc 133:18122

    Article  CAS  Google Scholar 

  37. Saeidia S, Amina NAS, Rahimpourb MR (2014) J CO2 Util 5:66

    Article  Google Scholar 

  38. Fechete I, Vedrine JC (2015) Molecules 20:5638

    Article  CAS  Google Scholar 

  39. Ravanchi MT, Sahebdelfar S (2015) Appl Petrochem Res 4:63

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by DST Fast Track (SB/FT/CS-124/2012), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, P., Srivastava, V. Synthesis of Monometallic Ru/TiO2 Catalysts and Selective Hydrogenation of CO2 to Formic Acid in Ionic Liquid. Catal Lett 146, 12–21 (2016). https://doi.org/10.1007/s10562-015-1654-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1654-9

Keywords

Navigation