Skip to main content
Log in

Performance and Stability of the Ru–Re/γ-Al2O3 Catalyst in the Total Oxidation of Propane: Influence of the Order of Impregnation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ru–Re/γ-Al2O3 catalysts were prepared by two sequential impregnation methods and their performances for the total oxidation of propane were investigated. TEM, XRD and H2 chemisorption data showed that the metal particle size was about 1.8 nm on both bimetallic catalysts. However, compared to the Ru/γ-Al2O3 catalyst with dispersion of 0.52, the Ru dispersion was improved by the presence of Re going from 0.64 for the catalyst with Re deposited on Ru/γ-Al2O3, to 0.70 for the sample with Ru deposited on Re/γ-Al2O3. The O2 adsorption data indicated that in the Re-modified catalysts the subsurface oxidation of Ru was suppressed, while in the Ru/γ-Al2O3 catalyst ruthenium was oxidized to a larger extent under oxidizing conditions at room temperature. The Ru deposited on Re/γ-Al2O3 exhibited a catalytic performance slightly better than the catalyst with Re impregnated on Ru/γ-Al2O3, but activity of Re-modified catalysts was not improved as compared to the Ru/γ-Al2O3 catalyst. On the other hand, bimetallic Ru–Re/γ-Al2O3 catalysts present better online stability and no deactivation was observed after the on-line tests for 30 h at temperature of 220 °C. TEM and XRD data showed that oxidized rhenium species strongly interacted with γ-alumina prevented large agglomeration of the Ru phase under O2-rich reaction conditions. The used monometallic Ru catalyst contained RuO2 oxide with crystallite size of 26 nm, while in the used bimetallic catalysts with size of 6–7 nm. Thus, in the consecutive catalytic tests Re-promoted Ru/γ-Al2O3 catalysts present higher activity and extended resistance to deactivation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Balint I, Miyazaki A, Aika K (2003) J Catal 220:74–83

    Article  CAS  Google Scholar 

  2. Wang Y, Jacobi K, Schoene WD, Ertl G (2005) J Phys Chem B 109:7883–7893

    Article  CAS  Google Scholar 

  3. Liu H, Iglesia E (2005) J Phys Chem B 109:2155–2163

    Article  CAS  Google Scholar 

  4. López N, Gómez-Segura J, Marín RP, Pérez-Ramírez J (2008) J Catal 255:29–39

    Article  Google Scholar 

  5. Aβmann J, Löffler E, Birkner A, Muhler M (2003) Catal Today 85:235–249

    Article  Google Scholar 

  6. Goodman DW, Peden CHF, Chen MS (2007) Surf Sci 601:124–126

    Article  Google Scholar 

  7. Joo SH, Park JY, Renzas JR, Buchter DR, Huang WY, Somorjai GA (2010) Nano Lett 10:2709–2713

    Article  CAS  Google Scholar 

  8. Qadir K, Joo SH, Mun BS, Buchter DR, Renzas JR, Aksoy F, Liu Z, Somorjai GA, Park JY (2012) Nano Lett 12:5761–5768

    Article  CAS  Google Scholar 

  9. Qadir K, Kim SM, Seo H, Mun BS, Akgul FA, Liu Z, Park JY (2013) J Phys Chem C 117:13108–13113

    Article  CAS  Google Scholar 

  10. Novio F, Monahan D, Coppel Y, Antorrena G, Lecante P, Philippot K, Chaudret B (2014) Chemistry 20:1287–1297

    Article  CAS  Google Scholar 

  11. Gupta S, Giordano C, Gradielski M, Mehta SK (2013) J Colloid Interfaces Sci 411:173–181

    Article  CAS  Google Scholar 

  12. Aouad S, Abi-Aad E, Aboukaïs A (2009) Appl Catal B 88:249–256

    Article  CAS  Google Scholar 

  13. Dai Q, Bai S, Wang X, Lu G (2013) Appl Catal B 129:580–588

    Article  CAS  Google Scholar 

  14. Mitsui T, Tsutsui K, Matsui T, Kikuchi R, Eguchi K (2008) Appl Catal B 81:56–63

    Article  CAS  Google Scholar 

  15. Okal J, Zawadzki M, Baranowska K (2014) Appl Catal A 471:98–105

    Article  CAS  Google Scholar 

  16. Isaifan RJ, Baranova EA (2015) Catal Today 241:107–113

    Article  CAS  Google Scholar 

  17. Debecker DP, Farin B, Gaigneaux EM, Sanchez C, Sassoye C (2014) Appl Catal A 481:11–18

    Article  CAS  Google Scholar 

  18. Okal J, Zawadzki M (2011) Appl Catal B 105:182–190

    Article  CAS  Google Scholar 

  19. Okal J, Zawadzki M (2009) Appl Catal B 89:22–32

    Article  CAS  Google Scholar 

  20. Okal J, Zawadzki M, Krajczyk L (2011) Catal Today 176:173–176

    Article  CAS  Google Scholar 

  21. Choudhary TV, Banerjee S, Choudhary VR (2002) Appl Catal A 234:1–23

    Article  CAS  Google Scholar 

  22. Garretto TF, Rincón E, Apesteguia CR (2004) Appl Catal B 48:167–174

    Article  Google Scholar 

  23. Yoshida H, Yazawa Y, Hattori T (2003) Catal Today 87:19–28

    Article  CAS  Google Scholar 

  24. Taylor MN, Zhou W, Garcia T, Solsona B, Carley AF, Kiely CJ, Taylor SH (2012) J Catal 285:103–114

    Article  CAS  Google Scholar 

  25. Avila MS, Vignatti CI, Apesteguia CR, Rao VV, Chary K, Garetto TF (2010) Catal Lett 134:118–123

    Article  CAS  Google Scholar 

  26. Taylor M, Ndifor EN, Garcia T, Solsona B, Carley AF, Taylor SH (2008) Appl Catal A 350:63–70

    Article  CAS  Google Scholar 

  27. Garcia T, Weng WH, Solsona B, Carter E, Carley AF, Kiely CJ, Taylor SH (2011) Catal Sci Technol 1:1367–1375

    Article  CAS  Google Scholar 

  28. Garcia T, Agouram S, Taylor SH, Morgan D, Dejoz A, Vazquez I, Solsona B (2015) Catal Today 254:12–20

    Article  CAS  Google Scholar 

  29. Sreethawong T, Sukjit D, Ouraipryvan P, Schwank JW, Chavadej S (2010) Catal Lett 138:160–170

    Article  CAS  Google Scholar 

  30. Chinchilla LE, Olmos CM, Villa A, Carlsson A, Prati L, Chen X, Blanco G, Calvino JJ, Hungria AB (2015) Catal Today. doi:10.1016/j.cattod.2015.02.030

    Google Scholar 

  31. Beamson G, Papworth AJ, Philips Ch, Smith AM, Whyman R (2011) J Catal 278:228–238

    Article  CAS  Google Scholar 

  32. Ma L, He D (2010) Catal Today 149:148–156

    Article  CAS  Google Scholar 

  33. Kang KH, Hong UG, Bang Y, Choi JH, Kim JK, Lee JK, Han SJ, Song IK (2015) Appl Catal A 490:153–162

    Article  CAS  Google Scholar 

  34. Baranowska K, Okal J, Miniajluk N (2014) Catal Lett 144:447–459

    Article  CAS  Google Scholar 

  35. Massalski TB (1990) Binary Alloy Phase Diagrams. ASM International, Materials Park

    Google Scholar 

  36. Goodwin JG (1981) J Catal 68:227–232

    Article  CAS  Google Scholar 

  37. Ebashi T, Ishida Y, Nakagawa Y, Ito S, Kubota T, Tomishige K (2010) J Phys Chem C 114:6518–6526

    Article  CAS  Google Scholar 

  38. Okal J, Kępiński L, Krajczyk L, Drozd M (1999) J Catal 188:140–153

    Article  CAS  Google Scholar 

  39. Koso S, Wanatabe H, Okumura K, Nakagawa Y, Tomishige K (2012) J Phys Chem C 116:3079–3090

    Article  CAS  Google Scholar 

  40. Bonarowska M, Malinowski A, Karpiński Z (1999) Appl Catal A 188:145–154

    Article  CAS  Google Scholar 

  41. Kirichenko OA, Redina EA, Davshan NA, Mishin IV, Kapustin GI, Brueva TR, Kustov LM, Li W, Kim C (2013) Appl Catal B 134–135:123–129

    Article  Google Scholar 

  42. Kiss JT, Gonzalez RD (1984) J Phys Chem 88:892–897

    Article  CAS  Google Scholar 

  43. Assmann J, Narkhede V, Breuer NA, Muhler M, Seitsonen AP, Knapp M, Crihan D, Farkas A, Mellau G, Over H (2008) J Phys 20:184017

    Google Scholar 

  44. Prestvik R, Moljord K, Grande K, Holmen A (1998) J Catal 174:119–129

    Article  CAS  Google Scholar 

  45. Wang CB, Cai Y, Wachs IE (1999) Langmiur 15:1223–1235

    Article  CAS  Google Scholar 

  46. Vuurman MA, Stufkens DJ, Oskam A, Wachs IE (1992) J Mol Catal 76:263–285

    Article  CAS  Google Scholar 

  47. Duke AS, Galhenage RP, Tenney SA, Sutter P, Chen DA (2015) J Phys Chem C 119:381–391

    Article  CAS  Google Scholar 

  48. Yao HC, Shelef M (1976) J Catal 44:392–403

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Centre in Poland (Grant No. UMO-2012/07/B/ST5/02028). The authors thanks Mrs. N. Miniajluk for H2-TPR study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janina Okal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranowska, K., Okal, J. Performance and Stability of the Ru–Re/γ-Al2O3 Catalyst in the Total Oxidation of Propane: Influence of the Order of Impregnation. Catal Lett 146, 72–81 (2016). https://doi.org/10.1007/s10562-015-1619-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1619-z

Keywords

Navigation