Skip to main content
Log in

Au@TiO2 Core–Shell Nanostructures with High Thermal Stability

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A catalyst system consisting of core–shell nanostructures with Au core and porous TiO2 shell was synthesized and characterized for room temperature CO oxidation. The core–shell structures were prepared by colloidal methods starting from pre-formed 3 nm Au particles in solution and then adsorbed on to high-surface area, functionalized hydrophobic Al2O3 support. The obtained Au@TiO2/Si–Al2O3 catalyst showed higher activity and thermal stability when compared to a conventional Au/TiO2 sample prepared by impregnation of the same Au particles on to commercial titania P25. The core–shell catalyst was able to maintain its activity and 3 nm Au particles size upon calcination up to 600 °C, whereas the Au/TiO2 sample was found to sinter. Furthermore, it was found that the crystallization of TiO2 was suppressed in the core–shell structure, resulting in a thin layer of small TiO2 particles, which is favorable for the dispersion and thermal stability of Au nanoparticles.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175

    Article  CAS  Google Scholar 

  2. Hayashi T, Tanaka K, Haruta M (1998) J Catal 178:566

    Article  CAS  Google Scholar 

  3. Sinha AK, Seelan S, Tsubota S, Haruta M (2004) Top Catal 29:95

    Article  CAS  Google Scholar 

  4. Fu Q, Weber A, Flytzani-Stephanopoulos M (2001) Catal Lett 77:87

    Article  CAS  Google Scholar 

  5. Boccuzzi F, Chiorino A (2000) J Phys Chem B 104:5414

    Article  CAS  Google Scholar 

  6. Haruta M (2002) Cattech 6:102

    Article  CAS  Google Scholar 

  7. Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331

    Article  CAS  Google Scholar 

  8. Costello CK, Kung MC, Oh HS, Wang Y, Kung HH (2002) Appl Catal a-Gen 232:159

    Article  CAS  Google Scholar 

  9. Wu YY, Mashayekhi NA, Kung HH (2013) Catal Sci Technol 3:2881

    Article  CAS  Google Scholar 

  10. Vecchietti J, Collins S, Delgado JJ, Malecka M, del Rio E, Chen XW, Bernal S, Bonivardi A (2011) Top Catal 54:201

    Article  CAS  Google Scholar 

  11. Zanella R, Giorgio S, Henry CR, Louis C (2002) J Phys Chem B 106:7634

    Article  CAS  Google Scholar 

  12. Bollinger MA, Vannice MA (1996) Appl Catal B-Environ 8:417

    CAS  Google Scholar 

  13. Kozlov AI, Kozlova AP, Liu HC, Iwasawa Y (1999) Appl Catal a-Gen 182:9

    Article  CAS  Google Scholar 

  14. Green IX, Tang WJ, Neurock M, Yates JT (2001) Science 333:736

    Article  Google Scholar 

  15. Tost A, Widmann D, Behm RJ (2009) J Catal 266:299

    Article  CAS  Google Scholar 

  16. Kung MC, Davis RJ, Kung HH (2007) J Phys Chem C 111:11767

    Article  CAS  Google Scholar 

  17. Wang J, Kispersky VF, Delgass WN, Ribeiro FH (2012) J Catal 289:171

    Article  CAS  Google Scholar 

  18. Chen MS, Goodman DW (2006) Acc Chem Res 39:739

    Article  CAS  Google Scholar 

  19. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405

    Article  Google Scholar 

  20. Valden M, Lai X, Goodman DW (1998) Science 281:1647

    Article  CAS  Google Scholar 

  21. Skriver HL, Rosengaard NM (1992) Phys Rev B 46:7157

    Article  CAS  Google Scholar 

  22. Brown MA, Carrasco E, Sterrer M, Freund HJ (2010) J Am Chem Soc 132:4064

    Article  CAS  Google Scholar 

  23. Min BK, Wallace WT, Goodman DW (2004) J Phys Chem B 108:14609

    Article  CAS  Google Scholar 

  24. Zhang YW, Zhou YM, Zhang ZW, Xiang SM, Sheng XL, Zhou SJ, Wang F (2014) Dalton T 43:1360

    Article  CAS  Google Scholar 

  25. Ma Z, Brown S, Howe JY, Overbury SH, Dai S (2008) J Phys Chem C 112:9448

    Article  CAS  Google Scholar 

  26. Pietron JJ, Stroud RM, Rolison DR (2002) Nano Lett 2:545

    Article  CAS  Google Scholar 

  27. Guttel R, Paul M, Schuth F (2011) Catal Sci Technol 1:65

    Article  Google Scholar 

  28. Cargnello M, Wieder NL, Montini T, Gorte RJ, Fornasiero P (2010) J Am Chem Soc 132:1402

    Article  CAS  Google Scholar 

  29. Bakhmutsky K, Wieder NL, Cargnello M, Galloway B, Fornasiero P, Gorte RJ (2012) Chemsuschem 5:140

    Article  CAS  Google Scholar 

  30. Cargnello M, Jaen JJD, Garrido JCH, Bakhmutsky K, Montini T, Gamez JJC, Gorte RJ, Fornasiero P (2012) Science 337:713

    Article  CAS  Google Scholar 

  31. Zheng N, Fan J, Stucky GD (2006) J Am Chem Soc 128:6550

    Article  CAS  Google Scholar 

  32. Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) Catal Lett 44:83

    Article  CAS  Google Scholar 

  33. Schumacher B, Plzak V, Kinne M, Behm RJ (2003) Catal Lett 89:109

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C.C. and R.J.G. were supported by the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, Grant no. DE-FG02-13ER16380. P.F. acknowledges COST Action CM1104 “Reducible oxide chemistry, structure and functions” and University of Trieste through FRA 2013 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Shi, M., Cargnello, M. et al. Au@TiO2 Core–Shell Nanostructures with High Thermal Stability. Catal Lett 144, 1939–1945 (2014). https://doi.org/10.1007/s10562-014-1351-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1351-0

Keywords

Navigation