Skip to main content
Log in

Effects of Bimesoporous Structure on Surface Acidity and Catalysis of Microspherical MFI Zeolite

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Microspherical MFI mesoporous zeolites (MMZ-5) with different mesopore volumes and similar silica-alumina ratios were prepared by the bond-blocking principle and confirmed by physical methods. The zeolite materials with high external surface areas contained inter- and intra-crystalline mesostructures. NH3-TPD and in situ FT-IR spectra techniques were used to characterize the acidic properties of the mesoporous zeolites. The results showed that the Py-Brönsted acid sites of the MMZ-5 samples are very similar to that of the conventional ZSM-5 zeolite, but the latter Py-Lewis acid sites are greatly larger than the former. Further, the concentration of DMPy-Brönsted acid sites in the mesoporous zeolites arrived at 70 μmol/g, namely, the 2,6-dimethylpyridine (DMPy) molecule can probe 97 % of the Py-Brönsted acid sites in the MMZ-5 zeolites. The introduction of the mesoporous structure into the MMZ-5 zeolites increased strongly the accessibility of the more bulky molecules, such as the DTBPy molecules. As expected, HMMZ-5-2 sample as an acid catalyst displayed a high reaction activity and an uniform product selectivity in the benzylation of p-xylene with benzyl chloride.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10

Similar content being viewed by others

References

  1. Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97:2373–2420

    Article  CAS  Google Scholar 

  2. Perez-Ramirez J, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev 37:2530–2542

    Article  CAS  Google Scholar 

  3. Tao Y, Kanoh H, Abrams L, Kaneko K (2006) Mesopore-modified zeolites: preparation, characterization, and applications. Chem Rev 106:896–910

    Article  CAS  Google Scholar 

  4. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821

    Article  CAS  Google Scholar 

  5. Cassiers K, Linssen T, Mathieu M, Benjelloun M, Schrijnemakers K, Van der Voort P, Cool P, Vansant EF (2002) A detailed study of thermal, hydrothermal, and mechanical stabilities of a wide range of surfactant assembled mesoporous silicas. Chem Mater 14:2317–2324

    Article  CAS  Google Scholar 

  6. Ogura M, Shinomiya SY, Tateno J, Nara Y, Nomura M, Kikuchi E, Matsukata M (2001) Alkali- treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl Catal A 219:33–43

    Article  CAS  Google Scholar 

  7. Caicedo-Realpe R, Pérez-Ramírez J (2010) Mesoporous ZSM-5 zeolites prepared by a two-step route comprising sodium aluminate and acid treatments. Micropor Mesopor Mater 128:91–100

    Article  CAS  Google Scholar 

  8. Janssen AH, Koster AJ, de Jong KP (2001) Three-dimensional transmission electron microscopic observations of mesopores in dealuminated zeolite Y. Angew Chem Int Ed 40:1102–1104

    Article  CAS  Google Scholar 

  9. Jacobsen CJ, Madsen C, Houzvicka J, Schmidt I, Carlsson A (2000) Mesoporous zeolite single crystals. J Am Chem Soc 122:7116–7117

    Article  CAS  Google Scholar 

  10. Xiao FS, Wang L, Yin C, Lin K, Di Y, Li J, Xu R, Su DS, Robert Schlögl T, Yokoi T, Tatsumi T (2006) Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angew Chem Int Ed 45:3090–3093

    Article  CAS  Google Scholar 

  11. Choi M, Cho HS, Srivastava R, Venkatesan C, Choi DH, Ryoo R (2006) Amphiphilic organosilane -directed synthesis of crystalline zeolite with tunable mesoporosity. Nat Mater 5:718–723

    Article  CAS  Google Scholar 

  12. Shetti VN, Kim J, Srivastava R, Choi M, Ryoo R (2008) Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures. J Catal 254:296–303

    Article  CAS  Google Scholar 

  13. Zhu H, Liu Z, Wang Y, Kong D, Yuan X, Xie Z (2007) Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite-1 crystal. Chem Mater 20:1134–1139

    Article  Google Scholar 

  14. Sun Y, Prins R (2008) Friedel-Crafts alkylations over hierarchical zeolite catalysts. Appl Catal A 336:11–16

    Article  CAS  Google Scholar 

  15. Serrano DP, García RA, Vicente G, Linares M, Procházková D, Čejka J (2011) Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units. J Catal 279:366–380

    Article  CAS  Google Scholar 

  16. Kim K, Ryoo R, Jang HD, Choi M (2012) Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences. J Catal 288:115–123

    Article  CAS  Google Scholar 

  17. Xue Z, Ma J, Zheng J, Zhang T, Kang Y, Li R (2012) Hierarchical structure and catalytic properties of a microspherical zeolite with intracrystalline mesopores. Acta Mater 60:5712–5722

    Article  CAS  Google Scholar 

  18. Emeis CA (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal 141:347–354

    Article  CAS  Google Scholar 

  19. Onfroy T, Clet G, Houalla M (2005) Quantitative IR characterization of the acidity of various oxide catalysts. Micropor Mesopor Mater 82:99–104

    Article  CAS  Google Scholar 

  20. Jacobsen CJ, Madsen C, Janssens TV, Jakobsen HJ, Skibsted J (2000) Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy. Micropor Mesopor Mater 39:393–401

    Article  CAS  Google Scholar 

  21. Petushkov A, Yoon S, Larsen SC (2011) Synthesis of hierarchical nanocrystalline ZSM-5 with controlled particle size and mesoporosity. Micropor Mesopor Mater 137:92–100

    Article  CAS  Google Scholar 

  22. Ramdas S, Klinowski J (1984) A simple correlation between isotropic 29Si-NMR chemical shifts and T-O-T angles in zeolite frameworks. Nature 308:521–523

    Article  CAS  Google Scholar 

  23. Wu G, Wu W, Wang X, Zan W, Wang W, Li C (2013) Nanosized ZSM-5 zeolites: seed-induced synthesis and the relation between the physicochemical properties and the catalytic performance in the alkylation of naphthalene. Micropor Mesopor Mater 180:187–195

    Article  CAS  Google Scholar 

  24. Thibault-Starzyk F, Stan I, Abelló S, Bonilla A, Thomas K, Fernandez C, Gilson JP, Pérez-Ramírez J (2009) Quantification of enhanced acid site accessibility in hierarchical zeolites-the accessibility index. J Catal 264:11–14

    Article  CAS  Google Scholar 

  25. Ungureanu A, Hoang TV, Trong On D, Dumitriu E, Kaliaguine S (2005) An investigation of the acid properties of UL-ZSM-5 by FTIR of adsorbed 2, 6-ditertbutylpyridine and aromatic transalkylation test reaction. Appl Catal A 294:92–105

    Article  CAS  Google Scholar 

  26. Xue Z, Zhang T, Ma J, Miao H, Fan W, Zhang Y, Li R (2012) Accessibility and catalysis of acidic sites in hierarchical ZSM-5 prepared by silanization. Micropor Mesopor Mater 151:271–276

    Article  CAS  Google Scholar 

  27. Serrano DP, Pizarro P (2013) Synthesis strategies in the search for hierarchical zeolites. Chem Soc Rev 42:4004–4035

    Article  CAS  Google Scholar 

  28. Ordomsky VV, Murzin VY, Monakhova YV, Zubavichus YV, Knyazeva EE, Nesterenko NS, Ivanova II (2007) Nature, strength and accessibility of acid sites in micro/mesoporous catalysts obtained by recrystallization of zeolite BEA. Micropor Mesopor Mater 105:101–110

    Article  CAS  Google Scholar 

  29. Singh AP, Jacob B, Sugunan S (1998) Liquid-phase selective benzylation of o-xylene using zeolite catalysts. Appl Catal A 174:51–60

    Article  CAS  Google Scholar 

  30. Vinu A, Sawant DP, Ariga K, Hartmann M, Halligudi SB (2005) Benzylation of benzene and other aromatics by benzyl chloride over mesoporous AlSBA-15 catalysts. Micropor Mesopor Mater 80:195–203

    Article  CAS  Google Scholar 

  31. Chaube VD (2004) Benzylation of benzene to diphenylmethane using zeolite catalysts. Catal Commun 5:321–326

    Article  CAS  Google Scholar 

  32. Selvaraj M, Lee TG (2006) Room temperature synthesis of diphenylmethane over novel mesoporous Lewis acid catalysts. J Mol Catal A 243:176–182

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, H., Ma, J., Wang, Y. et al. Effects of Bimesoporous Structure on Surface Acidity and Catalysis of Microspherical MFI Zeolite. Catal Lett 144, 1868–1876 (2014). https://doi.org/10.1007/s10562-014-1349-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1349-7

Keywords

Navigation