Skip to main content

Advertisement

Log in

Protective effects of mesenchymal stem cells on ischemic brain injury: therapeutic perspectives of regenerative medicine

  • Full Length Review
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Cerebral ischemic injury as the main manifestation of stroke can occur in stroke patients (70–80%). Nowadays, the main therapeutic strategy used for ischemic brain injury treatment aims to achieve reperfusion, neuroprotection, and neurorecovery. Also, angiogenesis as a therapeutic approach maybe represents a promising tool to enhance the prognosis of cerebral ischemic stroke. Unfortunately, although many therapeutic approaches as a life-saving gateway for cerebral ischemic injuries like pharmacotherapy and surgical treatments are widely used, they all fail to restore or regenerate damaged neurons in the brain. So, the suitable therapeutic approach would focus on regenerating the lost cells and restore the normal function of the brain. Currently, stem cell-based regenerative medicine introduced a new paradigm approach in cerebral ischemic injuries treatment. Today, in experimental researches, different types of stem cells such as mesenchymal stem cells have been applied. Therefore, stem cell-based regenerative medicine provides the opportunity to inquire and develop a more effective and safer therapeutic approach with the capability to produce and regenerate new neurons in damaged tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbasi-Kangevari M, Ghamari SH, Safaeinejad F, Bahrami S, Redl H, Niknejad H (2019) Potential therapeutic features of human amniotic membrane mesenchymal stem cells in multiple sclerosis: immunomodulation, inflammation suppression, angiogenesis promotion, oxidative stress inhibition, neurogenesis induction, MMPs regulation, and remyelination stimulation. Front Immunol 10:238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antonucci I, Pantalone A, Tete S, Salini V, Borlongan V, Hess C, Stuppia D, L (2012) Amniotic fluid stem cells: a promising therapeutic resource for cell-based regenerative therapy. Curr Pharm Des 18:1846–1863

    CAS  PubMed  Google Scholar 

  • Babovic S, Eaves CJ (2014) Hierarchical organization of fetal and adult hematopoietic stem cells. Exp Cell Res 329:185–191

    CAS  PubMed  Google Scholar 

  • Bagheri-Mohammadi S (2020) Microglia in Alzheimer's disease: the role of stem cell-microglia interaction in brain homeostasis. Neurochem Res 10:1–8

    Google Scholar 

  • Bagheri-Mohammadi S, Alani B, Karimian M, Moradian-Tehrani R, Noureddini M (2019a) Intranasal administration of endometrial mesenchymal stem cells as a suitable approach for Parkinson’s disease therapy. Mol Biol Rep 23:1

    Google Scholar 

  • Bagheri-Mohammadi S, Karimian M, Alani B, Verdi J, Tehrani RM, Noureddini M (2019b) Stem cell-based therapy for Parkinson’s disease with a focus on human endometrium-derived mesenchymal stem cells. J Cell Physiol 234:1326–1335

    CAS  PubMed  Google Scholar 

  • Baker EW, Platt SR, Lau VW, Grace HE, Holmes SP, Wang L, Duberstein KJ, Howerth EW, Kinder HA, Stice SL, Hess DC (2017) Induced pluripotent stem cell-derived neural stem cell therapy enhances recovery in an ischemic stroke pig model. Sci Rep 7:1–15

    Google Scholar 

  • Bang OY, Kim EH (2019) Mesenchymal stem cell-derived extracellular vesicle therapy for stroke: challenges and progress. Front Neurol 10:211

  • Bang OY, Lee JS, Lee PH, Lee G (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol Off J Am Neurol Assoc Child Neurol Soc 57:874–882

    Google Scholar 

  • Barzegar M, Kaur G, Gavins FN, Wang Y, Boyer C, Alexander JS (2019) Potential therapeutic roles of stem cells in ischemia-reperfusion injury. Stem Cell Res 16:101421

    Google Scholar 

  • Benedek A, Cernica D, Mester A, Opincariu D, Hodas R, Rodean I, Keri J, Benedek T (2019) Modern concepts in regenerative therapy for ischemic stroke: from stem cells for promoting angiogenesis to 3D-bioprinted Scaffolds customized via carotid shear stress analysis. Int J Mol Sci 20:2574

    CAS  PubMed Central  Google Scholar 

  • Bhartiya D (2019) Clinical translation of stem cells for regenerative medicine: a comprehensive analysis. Circ Res 124:840–852

    CAS  PubMed  Google Scholar 

  • Boncoraglio GB, Ranieri M, Bersano A, Parati EA, Del, Giovane C (2019) Stem cell transplantation for ischemic stroke. Cochrane Database Syst Rev 5:CD007231

  • Bonsack B, Corey S, Shear A, Heyck M, Cozene B, Sadanandan N, Zhang H, Gonzales-Portillo B, Sheyner M, Borlongan CV (2020) Mesenchymal stem cell therapy alleviates the neuroinflammation associated with acquired brain injury. CNS Neurosci Ther 26:603–615

    PubMed  PubMed Central  Google Scholar 

  • Borlongan CV (2019) Concise review: stem cell therapy for stroke patients: are we there yet? Stem Cells Transl Med 8:983–988

    PubMed  PubMed Central  Google Scholar 

  • Campos F (2019) Adult stem cells and induced pluripotent stem cells for stroke treatment. Front Neurol 10:908

    PubMed  PubMed Central  Google Scholar 

  • Ceccarelli S, Pontecorvi P, Anastasiadou E, Napoli C, Marchese C (2020) Immunomodulatory effect of adipose-derived stem cells: the cutting edge of clinical application. Front Cell Dev Biol 8:236

  • Chai Y, Maxson JrRE (2006) Recent advances in craniofacial morphogenesis. Dev Dyn Off Publ Am Assoc Anatom 235:2353–2375

    Google Scholar 

  • Chang CY, Ting HC, Su HL, Jeng JR (2018) Combining induced pluripotent stem cells and genome editing technologies for clinical applications. Cell Transpl 27:379–392

    Google Scholar 

  • Chang CY, Ting HC, Liu CA, Su HL, Chiou TW, Lin SZ, Harn HJ, Ho TJ (2020) Induced pluripotent stem cell (iPSC)-based neurodegenerative disease models for phenotype recapitulation and drug screening. Molecules 25:2000

  • Chen J, Shehadah A, Pal A, Zacharek A, Cui X, Cui Y, Roberts C, Lu M, Zeitlin A, Hariri R, Chopp M (2013) Neuroprotective effect of human placenta-derived cell treatment of stroke in rats. Cell Transpl 22(5):871–879

    Google Scholar 

  • Chen Y, Liang Y, Luo X, Hu Q (2020) Oxidative resistance of leukemic stem cells and oxidative damage to hematopoietic stem cells under pro-oxidative therapy. Cell Death Dis 11:1–2

    Google Scholar 

  • Collino F, Pomatto M, Bruno S, Lindoso RS, Tapparo M, Sicheng W, Quesenberry P, Camussi G (2017) Exosome and microvesicle-enriched fractions isolated from mesenchymal stem cells by gradient separation showed different molecular signatures and functions on renal tubular epithelial cells. Stem Cell Rev Rep 13:226–243

    CAS  PubMed  Google Scholar 

  • Courties G, Herisson F, Sager HB, Heidt T, Ye Y, Wei Y, Sun Y, Severe N, Dutta P, Scharff J, Scadden DT (2015) Ischemic stroke activates hematopoietic bone marrow stem cells. Circ Res 116:407–417

    CAS  PubMed  Google Scholar 

  • Cozene B, Antonucci I, Stuppia L (2019) Activity of p53 in human amniotic fluid stem cells increases their potentiality as a candidate for stem cell therapy. Brain Circ 5:134

    PubMed  PubMed Central  Google Scholar 

  • Crippa S, Santi L, Bosotti R, Porro G, Bernardo ME (2020) Bone marrow-derived mesenchymal stromal cells: a novel target to optimize hematopoietic stem cell transplantation protocols in hematological malignancies and rare genetic disorders. J Clin Med 9:2

    CAS  Google Scholar 

  • Dabrowska S, Andrzejewska A, Strzemecki D, Muraca M, Janowski M, Lukomska B (2019) Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats. J Neuroinflammation 16:216

    PubMed  PubMed Central  Google Scholar 

  • De Miguel MP, Fuentes-Julián S, Alcaina Y (2010) Pluripotent stem cells: origin, maintenance and induction. Stem Cell Rev Rep 6:633–649

    PubMed  Google Scholar 

  • Del Fattore A, Luciano R, Saracino R, Battafarano G, Rizzo C, Pascucci L, Alessandri G, Pessina A, Perrotta A, Fierabracci A et al (2015) Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells. Exp Opin Biol Ther 15:495–504

    Google Scholar 

  • Dharmasaroja P (2009) Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke. J Clin Neurosci 16:12–20

    PubMed  Google Scholar 

  • Díez-Tejedor E, Gutiérrez-Fernández M, Martínez-Sánchez P, Rodríguez-Frutos B, Ruiz-Ares G, Lara ML, Gimeno BF (2014) Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: a safety assessment: a phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J Stroke Cerebrovasc Dis 23:2694–2700

    PubMed  Google Scholar 

  • El-Hashash A (2016) Neural crest stem cells: a therapeutic hope machine for neural regeneration. In: Recent advances in stem cells, pp 233–250

  • Fong SP, Tsang KS, Chan AB, Lu G, Poon WS, Li K, Baum LW, Ng HK (2007) Trophism of neural progenitor cells to embryonic stem cells: neural induction and transplantation in a mouse ischemic stroke model. J Neurosci Res 85:1851–1862

    CAS  PubMed  Google Scholar 

  • Gao X, Xu C, Asada N, Frenette PS (2018) The hematopoietic stem cell niche: from embryo to adult. Development 145:dev139691

    PubMed  PubMed Central  Google Scholar 

  • Gennaro M, Mattiello A, Pizzorusso T (2019) Rodent models of developmental ischemic stroke for translational research: strengths and weaknesses. Neural Plast 2019:5089321

  • Gratwohl A, Passweg J, Bocelli-Tyndall C, Fassas A, Van, Laar JM, Farge D, Andolina M, Arnold R, Carreras E, Finke J, Kötter I (2005) Autologous hematopoietic stem cell transplantation for autoimmune diseases. Bone Marrow Transpl 35:869–879

    CAS  Google Scholar 

  • Hao L, Zou Z, Tian H, Zhang Y, Zhou H, Liu L (2014) Stem cell-based therapies for ischemic stroke. BioMed Res Int 2014:468748

  • Honmou O (2016) Phase III clinical trial using autologous mesenchymal stem cells for stroke patients. Nihon rinsho Jpn J Clin Med 74:649–654

    Google Scholar 

  • Huang H, Lin F, Jiang J, Chen Y, Mei A, Zhu P (2017) Effects of intra-arterial transplantation of adipose-derived stem cells on the expression of netrin-1 and its receptor DCC in the peri-infarct cortex after experimental stroke. Stem Cell Res Ther 8:1–2

    Google Scholar 

  • Hufnagel D, Li F, Cosar E, Krikun G, Taylor HS (2015) The role of stem cells in the etiology and pathophysiology of endometriosis. In: Seminars in reproductive medicine. Thieme Medical Publishers, vol 33, pp 333–340

  • Ilic D, Polak JM (2011) Stem cells in regenerative medicine: introduction. Br Med Bull 98:117–126

    PubMed  Google Scholar 

  • Jang SH, Lee J, Yeo SS (2017) Central post-stroke pain due to injury of the spinothalamic tract in patients with cerebral infarction: a diffusion tensor tractography imaging study. Neural Regener Res 12:2021

  • Javidi E, Magnus T (2019) Autoimmunity after ischemic stroke and brain injury. Front Immunol 10:686

  • Jiang XC, Xiang JJ, Wu HH, Zhang TY, Zhang DP, Xu QH, Huang XL, Kong XL, Sun JH, Hu YL, Li K (2019) Neural stem cells transfected with reactive oxygen species–responsive polyplexes for effective treatment of ischemic stroke. Adv Mater 31:1807591

    Google Scholar 

  • Kalladka D, Muir KW (2014) Brain repair: cell therapy in stroke. Stem Cells Cloning Adv Appl 7:31

    CAS  Google Scholar 

  • Kalladka D, Sinden J, Pollock K, Haig C, McLean J, Smith W, McConnachie A, Santosh C, Bath PM, Dunn L, Muir KW (2016) Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study. The Lancet 388:787–796

    Google Scholar 

  • Kaucka M, Ivashkin E, Gyllborg D, Zikmund T, Tesarova M, Kaiser J, Xie M, Petersen J, Pachnis V, Nicolis SK, Yu T (2016) Analysis of neural crest–derived clones reveals novel aspects of facial development. Sci Adv 2:e1600060

    PubMed  PubMed Central  Google Scholar 

  • Kes VB, Jurasic MJ, Zavoreo I, Lisak M, Jelec V, Matovina LZ (2016) Age and gender differences in acute stroke hospital patients. Acta Clin Croat 55:69–78

    PubMed  Google Scholar 

  • Koh SH, Park HH (2017) Neurogenesis in stroke recovery. Transl Stroke Res 8:3–13

    CAS  PubMed  Google Scholar 

  • Kolios G, Moodley Y (2013) Introduction to stem cells and regenerative medicine. Respiration 85:3–10

    PubMed  Google Scholar 

  • Kranz A, Wagner DC, Kamprad M, Scholz M, Schmidt UR, Nitzsche F, Aberman Z, Emmrich F, Riegelsberger UM, Boltze J (2010) Transplantation of placenta-derived mesenchymal stromal cells upon experimental stroke in rats. Brain Res 1315:128–136

    CAS  PubMed  Google Scholar 

  • Kuczynski A, Marzoughi S, Al, Sultan AS, Goyal M, Demchuk A, Almekhlafi MA (2019) Therapeutic hypothermia in patients with acute ischemic stroke a systematic review of prospective controlled studies. Stroke 50:A83-

    Google Scholar 

  • Lan X, Sun Z, Chu C, Boltze J, Li S (2019) Dental pulp stem cells: an attractive alternative for cell therapy in ischemic stroke. Front Neurol 10:824

    PubMed  PubMed Central  Google Scholar 

  • Laskowitz DT, Bennett ER, Durham RJ, Volpi JJ, Wiese JR, Frankel M, Shpall E, Wilson JM, Troy J, Kurtzberg J (2018) Allogeneic umbilical cord blood infusion for adults with ischemic stroke: clinical outcomes from a phase I safety study. Stem Cells Transl Med 7:521–529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le R, Huang Y, Zhao A, Gao S (2020) Lessons from expanded potential of embryonic stem cells: moving toward totipotency. J Genet Genom 47:123–130

    Google Scholar 

  • Li C, Fei K, Tian F, Gao C, Song Y (2019a) Adipose-derived mesenchymal stem cells attenuate ischemic brain injuries in rats by modulating miR-21-3p/MAT2B signaling transduction. Croatian Med J 60:439

    CAS  Google Scholar 

  • Li Z, Ye H, Cai X, Sun W, He B, Yang Z, Xu P (2019b) Bone marrow-mesenchymal stem cells modulate microglial activation in the peri-infarct area in rats during the acute phase of stroke. Brain Res Bull 153:324–333

    CAS  PubMed  Google Scholar 

  • Liao LY, Lau BW, Sánchez-Vidaña DI, Gao Q (2019) Exogenous neural stem cell transplantation for cerebral ischemia. Neural Regener Res 14:1129

    Google Scholar 

  • Lin YC, Ko TL, Shih YH, Lin MY, Fu TW, Hsiao HS, Hsu JY, Fu YS (2011) Human umbilical mesenchymal stem cells promote recovery after ischemic stroke. Stroke 42:2045–2053

    PubMed  Google Scholar 

  • Ma Y, Liu Y, Zhang Z, Yang GY (2019) Significance of complement system in ischemic stroke: a comprehensive review. Aging Dis 10:429–462

    PubMed  PubMed Central  Google Scholar 

  • Machaliński B, Paczkowska E, Koziarska D, Ratajczak MZ (2006) Mobilization of human hematopoietic stem/progenitor-enriched CD34 + cells into peripheral blood during stress related to ischemic stroke. Folia Histochemica et Cytobiologica 44:97–101

    PubMed  Google Scholar 

  • Mangin G, Cogo A, Moisan A, Bonnin P, Maïer B, Kubis N (2019) Intravenous administration of human adipose derived-mesenchymal stem cells is not efficient in diabetic or hypertensive mice subjected to focal cerebral ischemia. Front Neurosci 13:718

    PubMed  PubMed Central  Google Scholar 

  • Marei HE, Hasan A, Rizzi R, Althani A, Afifi N, Cenciarelli C, Caceci T, Shuaib A (2018) Potential of stem cell-based therapy for ischemic stroke. Front Neurol 9:34

    PubMed  PubMed Central  Google Scholar 

  • Mashkouri S, Crowley MG, Liska MG, Corey S, Borlongan CV (2016) Utilizing pharmacotherapy and mesenchymal stem cell therapy to reduce inflammation following traumatic brain injury. Neural Regener Res 11:1379

    CAS  Google Scholar 

  • Mead B, Logan A, Berry M, Leadbeater W, Scheven BA (2017) Concise review: dental pulp stem cells: a novel cell therapy for retinal and central nervous system repair. Stem Cells 35:61–67

    CAS  PubMed  Google Scholar 

  • Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2, 3-dioxygenase–mediated tryptophan degradation. Blood 103:4619–4621

    CAS  PubMed  Google Scholar 

  • Merino-González C, Zuñiga FA, Escudero C, Ormazabal V, Reyes C, Nova-Lamperti E, Salomón C, Aguayo C (2016) Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potencial clinical application. Front Physiol 7:24

    PubMed  PubMed Central  Google Scholar 

  • Moniche F, Rosado-de-Castro PH, Escudero I, Zapata E, de la Torre Laviana FJ, Mendez-Otero R, Carmona M, Piñero P, Bustamante A, Lebrato L, Cabezas JA (2016) Increasing dose of autologous bone marrow mononuclear cells transplantation is related to stroke outcome: results from a pooled analysis of two clinical trials. Stem Cells Int

  • Mu J, Bakreen A, Juntunen M, Korhonen P, Oinonen E, Cui L, Myllyniemi M, Zhao S, Miettinen S, Jolkkonen J (2019) Combined adipose tissue-derived mesenchymal stem cell therapy and rehabilitation in experimental stroke. Front Neurol 10:235

    PubMed  PubMed Central  Google Scholar 

  • Murphy MB, Moncivais K, Caplan AI (2013) Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 45:54

    Google Scholar 

  • Oladiran O, Nwosu I (2019) Stroke risk stratification in atrial fibrillation: a review of common risk factors. J Community Hospital Internal Med Perspectives 9:113–120

    Google Scholar 

  • Omid Sadatpoor S, Salehi Z, Rahban D, Salimi A (2020) Manipulated mesenchymal stem cells applications in neurodegenerative diseases. Int J Stem Cells 13:24

    Google Scholar 

  • Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:631–644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ottoboni L, Wunster BV, Martino G (2020) Therapeutic plasticity of neural stem cells. Front Neurol 11:148

    PubMed  PubMed Central  Google Scholar 

  • Ouchi T, Nakagawa T (2020) Mesenchymal stem cell-based tissue regeneration therapies for periodontitis. Regener Ther 14:72–78

    Google Scholar 

  • Parmar M, Grealish S, Henchcliffe C (2020) The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci 6:1–3

    Google Scholar 

  • Paudyal A, Ghinea FS, Driga MP, Fang WH, Alessandri G, Combes L, Degens H, Slevin M, Hermann DM, Popa-Wagner A (2020) p5 Peptide-Loaded Human Adipose-Derived Mesenchymal Stem Cells Promote Neurological Recovery After Focal Cerebral Ischemia in a Rat Model. Transl Stroke Res

  • Pischiutta F, Sammali E, Parolini O, Carswell HV, Zanier ER (2018) Placenta-derived cells for acute brain injury. Cell Transpl 27:151–167

    Google Scholar 

  • Rajabzadeh N, Fathi E, Farahzadi R (2019) Stem cell-based regenerative medicine. Stem Cell Investig 6:19

  • Rodrigues M, Antonucci I, Elabd S, Kancherla S, Marchisio M, Blattner C, Stuppia L (2018) P53 is active in human amniotic fluid stem cells. Stem Cells Dev 27:1507–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salehi MS, Pandamooz S, Safari A, Jurek B, Tamadon A, Namavar MR, Dianatpour M, Dargahi L, Azarpira N, Fattahi S, Shid, Moosavi SM (2020) Epidermal neural crest stem cell transplantation as a promising therapeutic strategy for ischemic stroke. CNS Neurosci Ther

  • Sarodaya N, Karapurkar J, Kim KS, Hong SH, Ramakrishna S (2020) The role of deubiquitinating enzymes in hematopoiesis and hematological malignancies. Cancers 12:1103

    CAS  PubMed Central  Google Scholar 

  • Schepici G, Silvestro S, Bramanti P, Mazzon E (2020) Traumatic brain injury and stem cells: an overview of clinical trials, the current treatments and future therapeutic approaches. Medicina 56:137

    PubMed Central  Google Scholar 

  • Seo JP, Kwon YH, Jang SH (2019) Mini-review of studies reporting the repeatability and reproducibility of diffusion tensor imaging. Investig Magn Reson Imaging 23:26–33

    Google Scholar 

  • Shichinohe H, Kawabori M, Iijima H, Teramoto T, Abumiya T, Nakayama N, Kazumata K, Terasaka S, Arato T, Houkin K (2017) Research on advanced intervention using novel bone marrOW stem cell (RAINBOW): a study protocol for a phase I, open-label, uncontrolled, dose-response trial of autologous bone marrow stromal cell transplantation in patients with acute ischemic stroke. BMC Neurol 17:179

    PubMed  PubMed Central  Google Scholar 

  • Song M, Jue SS, Cho YA, Kim EC (2015) Comparison of the effects of human dental pulp stem cells and human bone marrow-derived mesenchymal stem cells on ischemic human astrocytes in vitro. J Neurosci Res 93:973–983

    CAS  PubMed  Google Scholar 

  • Surugiu R, Olaru A, Hermann DM, Glavan D, Catalin B, Popa-Wagner A (2019) Recent advances in mono-and combined stem cell therapies of stroke in animal models and humans. Int J Mol Sci 20:6029

    CAS  PubMed Central  Google Scholar 

  • Tajiri N, Acosta S, Glover LE, Bickford PC, Simancas AJ, Yasuhara T, Date I, Solomita MA, Antonucci I, Stuppia L, Kaneko Y (2012) Intravenous grafts of amniotic fluid-derived stem cells induce endogenous cell proliferation and attenuate behavioral deficits in ischemic stroke rats. PLoS One 7:e43779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tajiri N, Acosta S, Portillo-Gonzales GS, Aguirre D, Reyes S, Lozano D, Pabon M, Dela Peña I, Ji X, Yasuhara T, Solomita MA (2014) Therapeutic outcomes of transplantation of amniotic fluid-derived stem cells in experimental ischemic stroke. Front Cell Neurosci 8:227

    PubMed  PubMed Central  Google Scholar 

  • Tang J, Wang H, Huang X, Li F, Zhu H, Li Y, He L, Zhang H, Pu W, Liu K et al (2020) Arterial Sca1 + vascular stem cells generate de novo smooth muscle for artery repair and regeneration. Cell Stem Cell 26:81–96

    CAS  PubMed  Google Scholar 

  • Tao X, Yang W, Zhu S, Que R, Liu C, Fan T, Wang J, Mo D, Zhang Z, Tan J et al (2019) Models of poststroke depression and assessments of core depressive symptoms in rodents: How to choose? Exp Neurol 322:113060

    PubMed  Google Scholar 

  • Tatullo M, Gargiulo IC, Dipalma G, Ballini A, Inchingolo AM, Paduanelli G, Inchingolo AD, Makeeva I, Scacco S, Nuzzolese M et al (2020) Stem cells and regenerative medicine. In: Translational systems medicine and oral disease, pp 387–407

  • Thwaites JW, Reebye V, Mintz P, Levicar N, Habib N (2012) Cellular replacement and regenerative medicine therapies in ischemic stroke. Regen Med 7:387–395

    CAS  PubMed  Google Scholar 

  • Tobin MK, Stephen TK, Lopez KL, Pergande MR, Bartholomew AM, Cologna SM, Lazarov O (2020) Activated mesenchymal stem cells induce recovery following stroke via regulation of inflammation and oligodendrogenesis. J Am Heart Assoc 9:e013583

  • Tsutsui TW (2020) Dental pulp stem cells: advances to applications. Stem Cells Cloning Adv Appl 13:33

    Google Scholar 

  • Wieloch T, Nikolich K (2006) Mechanisms of neural plasticity following brain injury. Curr Opin Neurobiol 16:258–264

    CAS  PubMed  Google Scholar 

  • Wislet-Gendebien S, Laudet E, Neirinckx V, Rogister B (2012) Adult bone marrow: which stem cells for cellular therapy protocols in neurodegenerative disorders?. BioMed Res Int

  • Yang B, Migliati E, Parsha K, Schaar K, Xi X, Aronowski J, Savitz SI (2013) Intra-arterial delivery is not superior to intravenous delivery of autologous bone marrow mononuclear cells in acute ischemic stroke. Stroke 44:3463–3472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi S, Zhang Y, Gu X, Huang L, Zhang K, Qian T, Gu X (2020) Application of stem cells in peripheral nerve regeneration. Burns Trauma 1:8

    Google Scholar 

  • Yin F, Wang WY, Jiang WH (2019) Human umbilical cord mesenchymal stem cells ameliorate liver fibrosis in vitro and in vivo: From biological characteristics to therapeutic mechanisms. World J Stem Cells 11:548

    PubMed  PubMed Central  Google Scholar 

  • Yu SP, Wei Z, Wei L (2013) Preconditioning strategy in stem cell transplantation therapy. Transl Stroke Res 4:76–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Liu LP, Fang M, Li YM, Zheng YW (2020) A potential ex vivo infection model of human induced pluripotent stem cell-3D organoids beyond coronavirus disease 2019. Histol Histopathol 27:18223

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Vice Chancellor for Research and Technology, Kashan University of Medical Sciences, Kashan, Iran; and Shahid Beheshti University of Medical Sciences, Tehran, Iran; Saeid & Maryam.

Author information

Authors and Affiliations

Authors

Contributions

Dr. SB-M design and prepare the paper; Saeid and Maryam.

Corresponding author

Correspondence to Saeid Bagheri-Mohammadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri-Mohammadi, S. Protective effects of mesenchymal stem cells on ischemic brain injury: therapeutic perspectives of regenerative medicine. Cell Tissue Bank 22, 249–262 (2021). https://doi.org/10.1007/s10561-020-09885-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-020-09885-6

Keywords

Navigation