Skip to main content
Log in

Chebyshev Approximation of a Multivariable Function with Reproducing the Values of the Function and Its Partial Derivatives

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

The method for constructing the Chebyshev approximation of a discrete multivariable function with reproducing the values of the function and its partial derivatives at given points is proposed. The method is based on constructing a boundary mean-power approximation with appropriate interpolation conditions. The authors use an iterative scheme based on the least squares method with a variable weight function for constructing the mean-power approximation. The results of approximating the one-variable function confirm the fulfillment of the characteristic feature of the Chebyshev approximation with the reproduction of the function and its derivative values at given points. The test examples instantiate the fast convergence of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Laurent, Approximation et Optimisation, Hermann, Paris (1972).

    MATH  Google Scholar 

  2. L. Collatz and W. Krabs, Approximationstheorie: Tschebyscheffsche Approximation mit Anwendungen, Teubner Studienbücher Mathematik (TSBMA), Vieweg+Teubner Verlag Wiesbaden (1973). https://doi.org/10.1007/978-3-322-94885-4.

  3. G. Nürnberger and M. Sommer, “Alternation for best spline approximation,” Numer. Math., Vol. 41, No. 2, 207–221 (1983). https://doi.org/https://doi.org/10.1007/BF01390213.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. A. Popov, Uniform Approximation by Splines [in Russian], Naukova Dumka, Kyiv (1989).

    MATH  Google Scholar 

  5. P. S. Malachivskyy and V. V. Skopetsky, Continuous and Smooth Minimax Spline Approximation [in Ukrainian], Naukova Dumka, Kyiv (2013).

    Google Scholar 

  6. V. Fedorchuk, V. Ivaniuk, and V. Ponedilok, “The method of decoding signals of temperature sensors of communication network equipment based on the use of nonlinear Volterra integral models,” in: 2022 IEEE 4th Intern. Conf. on Advanced Trends in Information Theory (ATIT 2022) (Kyiv, Ukraine, December 15–17, 2022), IEEE (2022), pp. 19–22. https://doi.org/https://doi.org/10.1109/ATIT58178.2022.10024220.

    Article  Google Scholar 

  7. A. Verlan, V. Fedorchuk, V. Ivaniuk, and J. Sterten, “Using non-linear integral models in automatic control and measurement systems for sensors’ input signals’ recovery,” in: R. A. Aliev, N. R. Yusupbekov, J. Kacprzyk, W. Pedrycz, and F. M. Sadikoglu (eds.), 11th World Conf. “Intelligent System for Industrial Automation” (WCIS-2020). WCIS 2020; Advances in Intelligent Systems and Computing, Vol. 1323, Springer, Cham (2021), pp. 18–25. https://doi.org/10.1007/978-3-030-68004-6_3.

  8. A. Bomba, S. Baranovsky, O. Blavatska, and L. Bachyshyna, “Infectious disease model generalization based on diffuse perturbations under conditions of body’s temperature reaction,” Comput. Biol. Med., Vol. 146, 105561 (2022). https//doi.org/https://doi.org/10.1016/j.compbiomed.2022.105561.

  9. A. Ya. Bomba, S. V. Baranovsky, M. S. Pasichnyk, and O. V. Pryshchepa, “Modeling small-scale spatial distributed influences on the development of infectious disease process,” Mathem. Modeling and Comput., Vol. 7, No. 2, 310–321 (2020). https//doi.org/https://doi.org/10.23939/mmc2020.02.310.

  10. N. P. Korneichuk, A. A. Ligun, and V. G. Doronin, Approximation with Constraints [in Russian], Naukova Dumka, Kyiv (1982).

    Google Scholar 

  11. L. Collatz and J. Albrecht, Aufgaben aus der Angewandten Mathematik I: Gleichungen in einer oder mehreren Variablen, Approximationen, für Mathematiker, Physiker, Chemiker, Biologen und Techniker ab 1. Semester I, Akademie-Verlag, Berlin (1972).

    MATH  Google Scholar 

  12. C. Dunham and C. Zhu, “Strong uniqueness of nonlinear Chebyshev approximation (with interpolation),” in: Proc. 20th Manitoba Conf. Congr. Numerical Mathematics and Computing, Numerantium 80, Winnipeg, Can., 1990, Winnipeg (1991), pp. 161–169.

  13. C. B. Dunham, “Discrete Chebyshev approximation with interpolation,” Int. J. Comput. Math., Vol. 11, No. 3–4, 243–245 (1982). https://doi.org/https://doi.org/10.1080/00207168208803314.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. V. Skopetskii and P. S. Malachivskii, “ Chebyshev approximation of functions by the sum of a polynomial and an expression with a nonlinear parameter and endpoint interpolation,” Cybern. Syst. Analysis, Vol. 45, No. 1, 58–68 (2009). https://doi.org/https://doi.org/10.1007/s10559-009-9078-4.

    Article  MATH  Google Scholar 

  15. L. S. Melnychok and B. A. Popov, “The best approximation of tabular functions with a condition,” in: Algorithms and Programs for Calculating Functions using an Electronic Digital Computer, Vol. 4 [in Russian], Inst. of Cybernetics, Kyiv (1977), pp. 189–200.

  16. P. S. Malachivskyy, L. S. Melnychok, and Y. V. Pizyur, “Chebyshev approximation of the functions of many variables with the condition,” in: Proc. IEEE 15th Intern. Conf. on Computer Sciences and Information Technologies (CSIT 2020) (Zbarazh, Ukraine, September 23–26, 2020), Vol. 2, IEEE (2020), pp. 54–57. https://doi.org/10.1109/CSIT49958.2020.9322026.

  17. P. Malachivskyy, L. Melnychok, and Ya. Pizyur, “Chebyshev approximation of multivariable functions with the interpolation,” Mathem. Modeling and Comput., Vol. 9, No. 3, 757–766 (2022). https://doi.org/10.23939/mmc2022.03.757.

  18. P. S. Malachivskyy, L. S. Melnychok, and Ya. V. Pizyur, “Chebyshev approximation of multivariable functions by a constrained rational expression,” Cybern. Syst. Analysis, Vol. 59, No. 1, 146–159 (2023). https://doi.org/https://doi.org/10.1007/s10559-023-00552-8.

    Article  MATH  Google Scholar 

  19. E. Ya. Remez, Fundamentals of the Numerical Methods of Chebyshev Approximation [in Russian], Naukova Dumka, Kyiv (1969).

    MATH  Google Scholar 

  20. P. S. Malachivskyy, Ya. V. Pizyur, R. P. Malachivskyi, and O. M. Ukhanska, “Chebyshev approximation of functions of several variables,” Cybern. Syst. Analysis, Vol. 56, No. 1, 118–125 (2020). https://doi.org/https://doi.org/10.1007/s10559-020-00227-8.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Malachivskyy.

Additional information

Translated from Kibernetyka ta Systemnyi Analiz, No. 4, July–August, 2023, pp. 169–180

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malachivskyy, P.S., Melnychok, L.S. & Pizyur, Y.V. Chebyshev Approximation of a Multivariable Function with Reproducing the Values of the Function and Its Partial Derivatives. Cybern Syst Anal 59, 660–671 (2023). https://doi.org/10.1007/s10559-023-00601-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-023-00601-2

Keywords

Navigation