Skip to main content

Advertisement

Log in

Changes in Heart Rate Variability Parameters Following Radiofrequency Ablation in Patients with Atrial Fibrillation: A Systematic Review and Meta-Analysis

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Radiofrequency (RF) ablation is a prevalent treatment for atrial fibrillation (AF), targeting triggers within the pulmonary vein (PV) for elimination. This study evaluated heart rate variability (HRV) parameter changes at three intervals post-RF ablation: short-term (immediately to 1 month), medium-term (1 to 6 months), and long-term (6 months to 1 year). We compared two ablation techniques: circumferential PV isolation (CPVI) and segmental PV isolation (SPVI).

Methods

A thorough search of databases, including PubMed, Embase, Scopus, Web of Science, and Cochrane, in 2022 yielded 835 pertinent studies. After inclusion criteria were applied, 22 studies were analyzed.

Results

Results showed a marked decline in HRV parameters post-AF ablation, with LF/HF as an exception. These reductions persisted in short- and long-term evaluations up to a year post-procedure. Subgroup analysis revealed significant HRV declines, with distinct LF/HF values post-SPVI.

Conclusion

This meta-analysis suggests the potential of decreased HRV as an indicator of autonomic denervation, necessitating further exploration to optimize therapeutic strategies and enhance patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data will be available from the corresponding author on reasonable request.

References

  1. Francis EH. Atrial fibrillation: symptoms, risk factors, assessment and management. Nurs Stand. 2023;38(2):77–82.

  2. January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am College Cardiol. 2014;64(21):e1–e76.

    Article  Google Scholar 

  3. Lévy S, Steinbeck G, Santini L, et al. Management of atrial fibrillation: Two decades of progress—a scientific statement from the European Cardiac Arrhythmia Society. J Interv Cardiac Electrophysiol. 2022;65(1):287–326.

    Article  Google Scholar 

  4. Haissaguerre M, Jaïs P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339(10):659–66.

    Article  CAS  PubMed  Google Scholar 

  5. Varley AL, Kreidieh O, Godfrey BE, et al. A prospective multi-site registry of real-world experience of catheter ablation for treatment of symptomatic paroxysmal and persistent atrial fibrillation (Real-AF): design and objectives. J Interv Cardiac Electrophysiol. 2021;62:487–94.

    Article  Google Scholar 

  6. Chen S-A, Hsieh M-H, Tai C-T, et al. Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation. Circulation. 1999;100(18):1879–86.

    Article  CAS  PubMed  Google Scholar 

  7. Kreidieh O, Varley AL, Romero J, et al. Practice patterns of operators participating in the real-world experience of catheter ablation for treatment of symptomatic paroxysmal and persistent atrial fibrillation (REAL-AF) registry. J Interv Cardiac Electrophysiol. 2022;65(2):429–40.

    Article  Google Scholar 

  8. Khaykin Y, Marrouche NF, Martin DO, et al. Pulmonary vein isolation for atrial fibrillation in patients with symptomatic sinus bradycardia or pauses. J Cardiovasc Electrophysiol. 2004;15(7):784–9.

    Article  PubMed  Google Scholar 

  9. Wickramasinghe SR, Patel VV. Local innervation and atrial fibrillation. Circulation. 2013;128(14):1566–75.

    Article  PubMed  Google Scholar 

  10. Calò L, Rebecchi M, Sciarra L, et al. Catheter ablation of right atrial ganglionated plexi in patients with vagal paroxysmal atrial fibrillation. Circ: Arrhythmia Electrophysiol. 2012;5(1):22–31.

    Google Scholar 

  11. Pokushalov E, Romanov A, Shugayev P, et al. Selective ganglionated plexi ablation for paroxysmal atrial fibrillation. Heart Rhythm. 2009;6(9):1257–64.

    Article  PubMed  Google Scholar 

  12. Stavrakis S, Po S. Ganglionated plexi ablation: physiology and clinical applications. Arrhythmia Electrophysiol Rev. 2017;6(4):186.

    Article  Google Scholar 

  13. Kim M-Y, Coyle C, Tomlinson DR, et al. Ectopy-triggering ganglionated plexuses ablation to prevent atrial fibrillation: GANGLIA-AF study. Heart Rhythm. 2022;19(4):516–24.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rackley J, Nudy M, Gonzalez MD, Naccarelli G, Maheshwari A. Pulmonary vein isolation with adjunctive left atrial ganglionic plexus ablation for treatment of atrial fibrillation: a meta-analysis of randomized controlled trials. J Interv Cardiac Electrophysiol. 2023;66(2):333–42.

    Article  Google Scholar 

  15. Pappone C, Oreto G, Lamberti F, et al. Catheter ablation of paroxysmal atrial fibrillation using a 3D mapping system. Circulation. 1999;100(11):1203–8.

    Article  CAS  PubMed  Google Scholar 

  16. Bauer A, Deisenhofer I, Schneider R, et al. Effects of circumferential or segmental pulmonary vein ablation for paroxysmal atrial fibrillation on cardiac autonomic function. Heart Rhythm. 2006;3(12):1428–35.

    Article  PubMed  Google Scholar 

  17. Sato H, Nakahara S, Fukuda R, et al. Is creation of a fully circumferential lesion set necessary for laser balloon ablation-based pulmonary vein isolation? J Interv Cardiac Electrophysiol. 2023;66(3):701–10.

    Google Scholar 

  18. Oral H, Knight BP, Özaydın M, et al. Segmental ostial ablation to isolate the pulmonary veins during atrial fibrillation: feasibility and mechanistic insights. Circulation. 2002;106(10):1256–62.

    Article  PubMed  Google Scholar 

  19. Koskela JK, Tahvanainen A, Tikkakoski AJ, et al. Resting heart rate predicts cardiac autonomic modulation during passive head-up tilt in subjects without cardiovascular diseases. Scand Cardiovasc J. 2022;56(1):138–47.

    Article  CAS  PubMed  Google Scholar 

  20. Malik M. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use: task force of the European Society of Cardiology and the North American Society for Pacing and Electrophysiology. Ann Noninvasive Electrocardiol. 1996;1(2):151–81.

    Article  Google Scholar 

  21. Mejía-Mejía E, May JM, Torres R, Kyriacou PA. Pulse rate variability in cardiovascular health: a review on its applications and relationship with heart rate variability. Physiol Measure. 2020;41(7):07TR1.

    Article  Google Scholar 

  22. Xhyheri B, Manfrini O, Mazzolini M, Pizzi C, Bugiardini R. Heart rate variability today. Prog Cardiovasc Dis. 2012;55(3):321–31.

    Article  PubMed  Google Scholar 

  23. Stuckey MI, Tulppo MP, Kiviniemi AM, Petrella RJ. Heart rate variability and the metabolic syndrome: a systematic review of the literature. Diabetes/Metab Res Rev. 2014;30(8):784–93.

    Article  PubMed  Google Scholar 

  24. Asarcikli LD, Hayiroglu Mİ, Osken A, et al. Heart rate variability and cardiac autonomic functions in post-COVID period. J Interv Cardiac Electrophysiol. 2022;63(3):715–21.

    Article  Google Scholar 

  25. Karpyak VM, Romanowicz M, Schmidt JE, Lewis KA, Bostwick JM. Characteristics of heart rate variability in alcohol-dependent subjects and nondependent chronic alcohol users. Alcoholism: Clin Exp Res. 2014;38(1):9–26.

    Article  Google Scholar 

  26. Mohammadieh AM, Dissanayake HU, Sutherland K, et al. Does obstructive sleep apnoea modulate cardiac autonomic function in paroxysmal atrial fibrillation? J Interv Cardiac Electrophysiol. 2023;66(4):873–83.

    Article  Google Scholar 

  27. Maciorowska M, Krzesiński P, Wierzbowski R, Gielerak G. Heart rate variability in patients with hypertension: the effect of metabolic syndrome and antihypertensive treatment. Cardiovasc Therapeut. 2020;8563135.

  28. Catai AM, Pastre CM, Godoy MF, et al. Heart rate variability: are you using it properly? Standardisation checklist of procedures. Braz. J Phys Ther. 2020;24(2):91–102.

    Google Scholar 

  29. Cygankiewicz I, Zareba W. Chapter 31 - Heart rate variability. In: Buijs RM, Swaab DF, editors. Handbook of Clinical Neurology. 117: Elsevier; 2013. p. 379-93.

  30. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258.

  31. Pham T, Lau ZJ, Chen SA, Makowski D. Heart rate variability in psychology: a review of HRV indices and an analysis tutorial. Sensors. 2021;21(12):3998.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang J, Yu X-D, Li G-Q. Comparative study on short-term and long-term prognostic determinants in patients with acute cerebral infarction. Int J Clin Exp Med. 2015;8(6):9855.

    PubMed  PubMed Central  Google Scholar 

  33. Yamada T, Yoshida N, Murakami Y, et al. The difference in autonomic denervation and its effect on atrial fibrillation recurrence between the standard segmental and circumferential pulmonary vein isolation techniques. Europace. 2009;11(12):1612–9.

    Article  PubMed  Google Scholar 

  34. Yamaguchi Y, Kumagai K, Nakashima H, Saku K. Long-term effects of box isolation on sympathovagal balance in atrial fibrillation. Circ J. 2010;74(6):1096–103.

    Article  PubMed  Google Scholar 

  35. Yanagisawa S, Inden Y, Fujii A, et al. Assessment of autonomic nervous system modulation after novel catheter ablation techniques for atrial fibrillation using multiple short-term electrocardiogram recordings. J Interv Cardiac Electrophysiol. 2018;51(1):35–44.

    Article  Google Scholar 

  36. Zhou W, Chen J, Chen J, et al. Study of the distribution of epicardial vagal ganglion and the relationship between delayed enhancement magnetic resonance imaging and radiofrequency ablation in patients with atrial fibrillation. World Neurosurg. 2020;138:732–9.

    Article  PubMed  Google Scholar 

  37. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906.

    Article  PubMed  Google Scholar 

  38. Ma L-L, Wang Y-Y, Yang Z-H, et al. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better? Military Med Res. 2020;7(1):1–11.

    Article  Google Scholar 

  39. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

    Article  PubMed  Google Scholar 

  40. Sutton AJ, Duval SJ, Tweedie R, Abrams KR, Jones DR. Empirical assessment of effect of publication bias on meta-analyses. BMJ. 2000;320(7249):1574–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Manolis AA, Manolis TA, Apostolopoulos EJ, et al. The role of the autonomic nervous system in cardiac arrhythmias: the neuro-cardiac axis, more foe than friend? Trends Cardiovasc Med. 2021;31(5):290–302.

    Article  CAS  PubMed  Google Scholar 

  42. Linz D, Elliott AD, Hohl M, et al. Role of autonomic nervous system in atrial fibrillation. Int J Cardiol. 2019;287:181–8.

    Article  PubMed  Google Scholar 

  43. Khan AA, Lip GY, Shantsila A. Heart rate variability in atrial fibrillation: the balance between sympathetic and parasympathetic nervous system. Eur J Clin Investig. 2019;49(11):e13174.

    Article  Google Scholar 

  44. Geurts S, Tilly MJ, Arshi B, et al. Heart rate variability and atrial fibrillation in the general population: a longitudinal and Mendelian randomization study. Clin Res Cardiol. 2023;112(6):747–58.

    Article  PubMed  Google Scholar 

  45. Friedman HS. Heart rate variability in atrial fibrillation related to left atrial size. Am J Cardiol. 2004;93(6):705–9.

    Article  PubMed  Google Scholar 

  46. Pappone C, Santinelli V, Manguso F, et al. Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation. 2004;109(3):327–34.

    Article  PubMed  Google Scholar 

  47. Cui J, Gonzalez MD, Blaha C, Hill A, Sinoway LI. Sympathetic responses induced by radiofrequency catheter ablation of atrial fibrillation. Am J Physiol-Heart Circ Physiol. 2019;316(3):H476–H84.

    Article  CAS  PubMed  Google Scholar 

  48. Yoshida N, Yamada T, Murakami Y, et al. Vagal modification can also help prevent late recurrence of atrial fibrillation after segmental pulmonary vein isolation. Circ J. 2009;73(4):632–8.

    Article  PubMed  Google Scholar 

  49. Bunch TJ, Ellenbogen KA, Packer DL, Asirvatham SJ. Vagus nerve injury after posterior atrial radiofrequency ablation. Heart Rhythm. 2008;5(9):1327–30.

    Article  PubMed  Google Scholar 

  50. Yamada S, Kaneshiro T, Hijioka N, et al. Autonomic cardiogastric neural interaction after pulmonary vein isolation in patients with atrial fibrillation. J Interv Cardiac Electrophysiol. 2022;65(2):357–64.

    Article  Google Scholar 

  51. Park SY, Camilleri M, Packer D, Monahan K. Upper gastrointestinal complications following ablation therapy for atrial fibrillation. Neurogastroenterol Motil. 2017;29(11):e13109.

    Article  Google Scholar 

  52. Kuyumcu MS, Ozeke O, Cay S, et al. The short-term impact of the catheter ablation on noninvasive autonomic nervous system parameters in patients with paroxysmal atrial fibrillation. Pacing Clin Electrophysiol. 2017;40(11):1193–9.

    Article  PubMed  Google Scholar 

  53. Hsieh M-H, Chiou C-W, Wen Z-C, et al. Alterations of heart rate variability after radiofrequency catheter ablation of focal atrial fibrillation originating from pulmonary veins. Circulation. 1999;100(22):2237–43.

    Article  CAS  PubMed  Google Scholar 

  54. Marinković M, Mujović N, Vučićević V, Steffel J, Potpara TS. A square root pattern of changes in heart rate variability during the first year after circumferential pulmonary vein isolation for paroxysmal atrial fibrillation and their relation with long-term arrhythmia recurrence. Kardiologia Polska (Polish Heart J). 2020;78(3):209–18.

    Article  Google Scholar 

  55. Tang LY, Hawkins NM, Ho K, et al. Autonomic alterations after pulmonary vein isolation in the CIRCA-DOSE (cryoballoon vs irrigated radiofrequency catheter ablation) study. J Am Heart Assoc. 2021;10(5):e018610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang E, Liang S, Sun T, et al. Prognostic value of heart rate variability in atrial fibrillation recurrence following catheter ablation: a systematic review and meta-analysis. Front Cardiovasc Med. 2023;9:1048398.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lampert R, Bremner JD, Su S, et al. Decreased heart rate variability is associated with higher levels of inflammation in middle-aged men. Am Heart J. 2008;156(4):009.

    Article  Google Scholar 

  58. Wood KA, Barnes AH, Paul S, Hines KA, Jackson KP. Symptom challenges after atrial fibrillation ablation. Heart Lung. 2017;46(6):425–31.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kang KW, Kim TH, Park J, et al. Long-term changes in heart rate variability after radiofrequency catheter ablation for atrial fibrillation: 1-year follow-up study with irrigation tip catheter. J Cardiovasc Electrophysiol. 2014;25(7):693–700.

    Article  PubMed  Google Scholar 

  60. Kuniewicz M, Karkowski G, Gosnell M, et al. Anatomical and electrophysiological localization of ganglionated plexi using high-density 3D CARTO mapping system. Trans Res Anatomy. 2022;27:100202.

    Google Scholar 

  61. Jin MN, Lim B, Yu HT, et al. Long-term outcome of additional superior vena cava to septal linear ablation in catheter ablation of atrial fibrillation. J Am Heart Assoc. 2019;8(22):e013985.

  62. Jungen C, Alken FA, Eickholt C, et al. Respiratory sinus arrhythmia is reduced after pulmonary vein isolation in patients with paroxysmal atrial fibrillation. Arch Med Sci. 2019;16(5):1022–30.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ketels S, Houben R, Van Beeumen K, Tavernier R, Duytschaever M. Incidence, timing, and characteristics of acute changes in heart rate during ongoing circumferential pulmonary vein isolation. Europace. 2008;10(12):1406–14.

    Article  PubMed  Google Scholar 

  64. Lim PB, Malcolme-Lawes LC, Stuber T, et al. Feasibility of multiple short, 40-s, intra-procedural ECG recordings to detect immediate changes in heart rate variability during catheter ablation for arrhythmias. J Interv Cardiac Electrophysiol. 2011;32(2):163–71.

    Article  Google Scholar 

  65. Lin YJ, Chang SL, Lo LW, et al. A prospective, randomized comparison of modified pulmonary vein isolation versus conventional pulmonary vein isolation in patients with paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol. 2012;23(11):1155–62.

    Article  PubMed  Google Scholar 

  66. Liu SZ, Shi XM, Guo HY, Wang YT, Shan ZL. Amplitude reduction of autonomic nerve function is correlated with ablation lesion quality in patients with paroxysmal atrial fibrillation. J Electrocardiol. 2020;59:158–63.

    Article  PubMed  Google Scholar 

  67. Miyanaga S, Yamane T, Date T, et al. Impact of pulmonary vein isolation on the autonomic modulation in patients with paroxysmal atrial fibrillation and prolonged sinus pauses. Europace. 2009;11(5):576–81.

    Article  PubMed  Google Scholar 

  68. Park JH, Hong SY, Wi J, et al. Catheter ablation of atrial fibrillation raises the plasma level of NGF-β which is associated with sympathetic nerve activity. Yonsei Med J. 2015;56(6):1530–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Redfearn DP, Skanes AC, Gula LJ, et al. Noninvasive assessment of atrial substrate change after wide area circumferential ablation: a comparison with segmental pulmonary vein isolation. Ann Noninvasive Electrocardiol. 2007;12(4):329–37.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Seaborn GEJ, Todd K, Michael KA, et al. Heart rate variability and procedural outcome in catheter ablation for atrial fibrillation. Ann Noninvasive Electrocardiol. 2014;19(1):23–33.

    Article  PubMed  Google Scholar 

  71. Vesela J, Osmancik P, Herman D, Prochazkova R. Changes in heart rate variability in patients with atrial fibrillation after pulmonary vein isolation and ganglionated plexus ablation. Physiol Res. 2019;68(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  72. Wang K, Chang D, Chu Z, et al. Denervation as a common mechanism underlying different pulmonary vein isolation strategies for paroxysmal atrial fibrillation: evidenced by heart rate variability after ablation. Scientific World J. 2013;2013:569564.

  73. Yamada T, Yoshida N, Murakami Y, et al. Vagal modification can be a valid predictor of late recurrence of paroxysmal atrial fibrillation independent of the pulmonary vein isolation technique. Circ J. 2009;73(9):1606–11.

    Article  PubMed  Google Scholar 

  74. Yu HT, Yang PS, Kim TH, et al. Poor Rhythm Outcome of Catheter Ablation for Early-Onset Atrial Fibrillation in Women- Mechanistic Insight. Circ J. 2018;82(9):2259–68.

    Article  PubMed  Google Scholar 

Download references

Funding

The Isfahan University of Medical Sciences financially supported this research under grant number 140186. The funder had no role in the study design, data collection and analysis, publication decision, or manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

Mahsa M contributed to the study conceptualization, methodology, writing, review and editing, and supervision. Zahra T and Azam SM contributed to the study conceptualization, methodology, writing, and original draft. Rasool N and Hamidreza M contributed to the study methodology and review, and Marjan M contributed to the study conceptualization, methodology, review, and supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mahsa Mansourian.

Ethics declarations

Ethical Approval

Ethical approval for this study was obtained from the Research Ethics Committee of the Alzahra Research Centers (approval ID: IR.ARI.MUI.REC.1401.088)

Competing Interests

No competing interests are declared.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansourian, M., Teimouri-jervekani, Z., Soleimani, A. et al. Changes in Heart Rate Variability Parameters Following Radiofrequency Ablation in Patients with Atrial Fibrillation: A Systematic Review and Meta-Analysis. Cardiovasc Drugs Ther (2024). https://doi.org/10.1007/s10557-024-07549-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10557-024-07549-1

Keywords

Navigation