Skip to main content

Advertisement

Log in

IL-33 Suppresses the Progression of Atherosclerosis via the ERK1/2-IRF1-VCAM-1 Pathway

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

This study was designed to explore the effects of interleukin 33 (IL-33) on the progression of atherosclerosis and the possible mechanism.

Methods

The adhesion assay was performed on isolated peripheral blood mononuclear cells (PBMCs) and human umbilical vein endothelial cells (HUVEC). The expression of proteins and messenger RNA (mRNA) were detected by western blot and quantitative real-time polymerase chain reaction (PCR), including intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and P-selectin. The effect of IL-33 on the interaction of growth stimulation expressed gene 2 (ST2) with myeloid differentiation factor 88 (MyD88) and interleukin-1 receptor-associated kinase (IRAK) 1/4 were investigated using co-immunoprecipitation assay. An apolipoprotein (Apo) E-/- mice model was used to confirm the effect of IL-33 on atherosclerosis progression. Area of plaques was recorded by hematoxylin-eosin (H&E) staining. The severity of atherosclerosis plaque was evaluated using immunohistochemistry assay, and lipid accumulation was measured by an oil red O staining. In contrast, western blot was performed to detect the expression levels of VCAM-1, extracellular signal-regulated kinase (ERK) 1/2, and interferon regulatory factor 1 (IRF1).

Results

Our study observed that IL-33 suppressed cell adhesion and the expression of VCAM-1 in tumor necrosis factor-α (TNF-α) exposed HUVEC. Moreover, the addition of IL-33 significantly inhibited the expression of IRF1 and the binding level of IRF1 to VCAM-1 and also promoted the phosphorylation level of IRAK1/4 and ERK1/2 compared to TNF-α-stimulated HUVEC. The ST2 neutralizing antibody or ERK pathway inhibitor SCH772984 reversed the regulatory effects of IL-33 on HUVEC, suggesting that IL-33 suppressed IRF1 and VCAM-1 dependent on binding to ST2 and activating the ERK1/2 signaling pathway. Further investigation in vivo confirmed that IL-33 decreased the expressions of IRF1 and VCAM-1 by activating the phosphorylation of ERK1/2 in the thoracic aorta of Apo E-/- mice.

Conclusion

In conclusion, our results demonstrated that IL-33 plays a protective role in the progression of atherosclerosis by inhibiting cell adhesion via the ERK1/2-IRF1-VCAM-1 pathway. This study may provide a potential therapeutic way to prevent the development of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marijon E, Narayanan K, Smith K, et al. The Lancet Commission to reduce the global burden of sudden cardiac death: a call for multidisciplinary action. Lancet. 2023;402(10405):883–936.

    Article  PubMed  Google Scholar 

  2. Deng P, Fu Y, Chen M, Wang D, et al. Temporal trends in inequalities of the burden of cardiovascular disease across 186 countries and territories. Int J Equity Health. 2023;22(1):164.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Besedovsky L, Lange T, Haack M. The Sleep-Immune Crosstalk in Health and Disease. Physiol Rev. 2019;99(3):1325–80.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yin C, Ackermann S, Ma Z, et al. ApoE attenuates unresolvable inflammation by complex formation with activated C1q. Nat Med. 2019;25(3):496–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wojtasińska A, Frąk W, Lisińska W, et al. Atherosclerosis and inflammation. New therapeutic approaches. Int J Mol Sci. 2023;24(17):13434.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bobryshev YV. Monocyte recruitment and foam cell formation in atherosclerosis. Micron. 2006;37(3):208–22.

    Article  CAS  PubMed  Google Scholar 

  7. Ríos-Navarro C, de Pablo C, Collado-Diaz V, et al. Differential effects of anti-TNF-α and anti-IL-12/23 agents on human leukocyte-endothelial cell interactions. Eur J Pharmacol. 2015;765:355–65.

    Article  PubMed  Google Scholar 

  8. Khodabandehlou K, Masehi-Lano JJ, Poon C, et al. Targeting cell adhesion molecules with nanoparticles using in vivo and flow-based in vitro models of atherosclerosis. Exp Biol Med (Maywood). 2017;242(8):799–812.

    Article  CAS  PubMed  Google Scholar 

  9. Ley K, Laudanna C, Cybulsky MI, et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.

    Article  CAS  PubMed  Google Scholar 

  10. Diaz Sanchez L, Sanchez-Aranguren L, Wang K, et al. TNF-α-mediated endothelial cell apoptosis is rescued by hydrogen sulfide. Antioxidants (Basel). 2023;12(3):734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479–90.

    Article  CAS  PubMed  Google Scholar 

  12. Lamkanfi M, Dixit VM. IL-33 raises alarm. Immunity. 2009;31(1):5–7.

    Article  CAS  PubMed  Google Scholar 

  13. Cayrol C, Girard JP. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev. 2018;281(1):154–68.

    Article  CAS  PubMed  Google Scholar 

  14. Park SB, Kim SJ, Cho SW, et al. Blocking of the IL-33/ST2 signaling axis by a single-chain antibody variable fragment (scFv) specific to IL-33 with a defined epitope. Int J Mol Sci. 2020;21(18):6953.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Griesenauer B, Paczesnpsy S. The ST2/IL-33 axis in immune cells during inflammatory diseases. Front Immunol. 2017;8:475.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Aimo A, Migliorini P, Vergaro G, et al. The IL-33/ST2 pathway, inflammation and atherosclerosis: trigger and target? Int J Cardiol. 2018;267:188–92.

    Article  PubMed  Google Scholar 

  17. Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol. 2010;10(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  18. Miller AM, Xu D, Asquith DL, et al. IL-33 reduces the development of atherosclerosis. J Exp Med. 2008;205(2):339–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ha SJ, Lee J, Song KM, et al. Ultrasonicated Lespedeza cuneata extract prevents TNF-α-induced early atherosclerosis in vitro and in vivo. Food Funct. 2018;9(4):2090–101.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou Y, Cao ZQ, Wang HY, et al. The anti-inflammatory effects of Morin hydrate in atherosclerosis is associated with autophagy induction through cAMP signaling. Mole Nutri Food Res. 2017;61(9):1600966.

    Article  Google Scholar 

  21. Liu X, Pan L, Wang X, et al. Leonurine protects against tumor necrosis factor-α-mediated inflammation in human umbilical vein endothelial cells. Atherosclerosis. 2012;222(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  22. Jian D, Wang Y, Jian L, et al. METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications. Theranostics. 2020;10(20):8939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee J, Ha SJ, Park J, et al. Arctium lappa root extract containing L-arginine prevents TNF-α-induced early atherosclerosis in vitro and in vivo. Nutri Res. 2020;77:85–96.

    Article  CAS  Google Scholar 

  24. Stojkovic S, Kaun C, Heinz M, et al. Interleukin-33 induces urokinase in human endothelial cells―possible impact on angiogenesis. J Thrombosis Haemostasis. 2014;12(6):948–57.

    Article  CAS  Google Scholar 

  25. Chalubinski M, Wojdan K, Luczak E, et al. IL-33 and IL-4 impair barrier functions of human vascular endothelium via different mechanisms. Vasc Pharmacol. 2015;73:57–63.

    Article  CAS  Google Scholar 

  26. Choi YS, Choi HJ, Min JK, et al. Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitric oxide production. Blood J Am Soc Hematol. 2009;114(14):3117–26.

    CAS  Google Scholar 

  27. Demyanets S, Konya V, Kastl SP, et al. Interleukin-33 induces expression of adhesion molecules and inflammatory activation in human endothelial cells and in human atherosclerotic plaques. Arteriosclerosis Thrombosis Vasc Biol. 2011;31(9):2080–9.

    Article  CAS  Google Scholar 

  28. Liu Y, Fang X, Yuan J, et al. The role of corticotropin-releasing hormone receptor 1 in the development of colitis-associated cancer in mouse model. Endocr Relat Cancer. 2014;21(4):639–51.

    Article  CAS  PubMed  Google Scholar 

  29. Zaki MH, Vogel P, Malireddi RK, et al. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell. 2011;20(5):649–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fan CS, Chen CC, Chen LL, et al. Extracellular HSP90α induces MyD88-IRAK complex-associated IKKα/β-NF-κB/IRF3 and JAK2/TYK2-STAT-3 signaling in macrophages for tumor-promoting M2-polarization. Cells. 2022;11(2):229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ohto-Ozaki H, Kuroiwa K, Mato N, et al. Characterization of ST2 transgenic mice with resistance to IL-33. Eur J Immunol. 2010;40(9):2632–42.

    Article  CAS  PubMed  Google Scholar 

  32. Demyanets S, Konya V, Kastl SP, et al. Interleukin-33 induces expression of adhesion molecules and inflammatory activation in human endothelial cells and in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 2011;31(9):2080–9.

    Article  CAS  PubMed  Google Scholar 

  33. Tembhre MK, Sriwastva MK, Hote MP, et al. Interleukin-33 induces neutrophil extracellular trap (NET) formation and macrophage necroptosis via enhancing oxidative stress and secretion of proatherogenic factors in advanced atherosclerosis. Antioxidants (Basel, Switzerland). 2022;11(12):2343.

    CAS  PubMed  Google Scholar 

  34. Altara R, Ghali R, Mallat Z, et al. Conflicting vascular and metabolic impact of the IL-33/sST2 axis. Cardiovasc Res. 2018;114(12):1578–94.

    Article  CAS  PubMed  Google Scholar 

  35. Lin CC, Yang CC, Wang CY, et al. NADPH uxidase/ROS-dependent VCAM-1 induction on TNF-α-challenged human cardiac fibroblasts enhances monocyte adhesion. Front Pharmacol. 2015;6:310.

    PubMed  Google Scholar 

  36. Neish AS, Read MA, Thanos D, Pine R, Maniatis T, Collins T. Endothelial interferon regulatory factor 1 cooperates with NF-kappa B as a transcriptional activator of vascular cell adhesion molecule 1. Mol Cell Biol. 1995;15(5):2558–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Du M, Wang X, Mao X, et al. Absence of interferon regulatory factor 1 protects against atherosclerosis in apolipoprotein E-deficient mice. Theranostics. 2019;9(16):4688–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hsieh HL, Lin CC, Shih RH, Hsiao LD, Yang CM. NADPH oxidase-mediated redox signal contributes to lipoteichoic acid-induced MMP-9 upregulation in brain astrocytes. J Neuroinflammation. 2012;9:110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Palomer X, Salvadó L, Barroso E, Vázquez-Carrera M. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy. Int J Cardiol. 2013;168(4):3160–72.

    Article  PubMed  Google Scholar 

  40. Buckley ML, Williams JO, Chan YH, et al. The interleukin-33-mediated inhibition of expression of two key genes implicated in atherosclerosis in human macrophages requires MAP kinase, phosphoinositide 3-kinase and nuclear factor-κB signaling pathways. Sci Rep. 2019;9(1):11317.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yamamoto M, Umebashi K, Tokito A, et al. Interleukin-33 induces growth-regulated oncogene-α expression and secretion in human umbilical vein endothelial cells. Am J Physiol Regul Integr Comp Physiol. 2017;313(3):R272–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Umebashi K, Tokito A, Yamamoto M, et al. Interleukin-33 induces interleukin-8 expression via JNK/c-Jun/AP-1 pathway in human umbilical vein endothelial cells. PLoS One. 2018;13(1):e0191659.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zhang Qian conceived, designed and performed the experiments, analyzed data, wrote and revised the manuscript. Feng Shaofang and Shi chunhua conducted the research and analyzed the data. Chen Chen helped us revise the manuscript. Wang Nan and Liu Chao conceived, supervised, funded, and reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wang Nan or Liu Chao.

Ethics declarations

Conflicts of Interest

The authors report no conflicts of interest in this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Fig. S1

Determination of the concentrations of TNF-α and IL-33 in HUVEC. (A) VCAM-1 expression in HUVEC after a gradient periods of TNF-α exposure. (B) VCAM-1 expression in HUVEC treated with different concentrations of IL-33 (with or without 10 ng/mL TNF-α). Notes: Data represented mean ± SD; n = 3; **P < 0.01. Abbreviations: IL, interleukin; VCAM-1, vascular cell adhesion molecule-1; TNF, tumor necrosis factor; HUVEC, human umbilical vein endothelial cells (PNG 422 kb)

High resolution image (TIF 29166 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Z., Shaofang, F., Chen, C. et al. IL-33 Suppresses the Progression of Atherosclerosis via the ERK1/2-IRF1-VCAM-1 Pathway. Cardiovasc Drugs Ther (2023). https://doi.org/10.1007/s10557-023-07523-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10557-023-07523-3

Keywords

Navigation