Skip to main content

Advertisement

Log in

Epigallocatechin-3-Gallate Inhibits Atrial Fibrosis and Reduces the Occurrence and Maintenance of Atrial Fibrillation and its Possible Mechanisms

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Background

Atrial fibrosis is one of the main causes of the onset and recurrence of atrial fibrillation (AF), for which there is no effective treatment. The aim of this study was to investigate the effect and mechanism of epigallocatechin-3-gallate (EGCG) on AF in rats.

Methods

The rat model of AF was established by rapid pacing induction after angiotensin-II (Ang-II) induced atrial fibrosis to verify the relationship between atrial fibrosis and the AF. The expression levels of TGF-β/Smad3 pathway molecules and lysyl oxidase (LOX) in AF were detected. Subsequently, EGCG was used to intervene Ang-II-induced atrial fibrosis to explore the role of EGCG in the treatment of AF and its inhibitory mechanism on fibrosis. It was further verified that EGCG inhibited the production of collagen and the expression of LOX through the TGF-β/Smad3 pathway at the cellular level.

Results

The results showed that the induction rate and maintenance time of AF in rats increased with the increase of the degree of atrial fibrosis. Meanwhile, the expressions of Col I, Col III, molecules related to TGF-β/Smad3 pathway, and LOX increased significantly in the atrial tissues of rats in the Ang-II induced group. EGCG could reduce the occurrence and maintenance time of AF by inhibiting the degree of Ang-induced rat atrial fibrosis. Cell experiments confirmed that EGCG could reduce the synthesis of collagen and the expression of LOX in cardiac fibroblast induced by Ang-II. The possible mechanism is to down-regulate the expression of genes and proteins related to the TGF-β/Smad3 pathway.

Conclusion

EGCG could downregulate the expression levels of collagen and LOX by inhibiting the TGF-β/Smad3 signaling pathway, alleviating Ang-II-induced atrial fibrosis, which in turn inhibited the occurrence and curtailed the duration of AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data sets generated and analyzed in the course of this study are available from the corresponding authors upon reasonable request.

References

  1. Andrade J, Khairy P, Dobrev D, Nattel S. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ Res. 2014;114(9):1453–68.

    Article  CAS  PubMed  Google Scholar 

  2. Karwath A, Bunting KV, Gill SK, et al. Redefining β-blocker response in heart failure patients with sinus rhythm and atrial fibrillation: a machine learning cluster analysis. Lancet. 2021;398(10309):1427–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42(5):373–498.

    Article  PubMed  Google Scholar 

  4. Kirchhof P. The future of atrial fibrillation management: integrated care and stratified therapy. Lancet. 2017;390(10105):1873–87.

    Article  PubMed  Google Scholar 

  5. Seligman WH, Das-Gupta Z, Jobi-Odeneye AO, et al. Development of an international standard set of outcome measures for patients with atrial fibrillation: a report of the International Consortium for Health Outcomes Measurement (ICHOM) atrial fibrillation working group. Eur Heart J. 2020;41(10):1132–40.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sepehri Shamloo A, Dagres N, Müssigbrodt A, et al. Atrial fibrillation and cognitive impairment: new insights and future directions. Heart Lung Circ. 2020;29(1):69–85.

    Article  PubMed  Google Scholar 

  7. Kallistratos MS, Poulimenos LE, Manolis AJ. Atrial fibrillation and arterial hypertension. Pharmacol Res. 2018;128:322–6.

    Article  CAS  PubMed  Google Scholar 

  8. Passman R. Catheter Ablation for Persistent Atrial Fibrillation. JAMA. 2023;329(2):125–6.

    Article  PubMed  Google Scholar 

  9. Park J-W, Yu HT, Kim T-H et al. Mechanisms of long-term recurrence 3 years after catheter ablation of atrial fibrillation. JACC Clin Electrophysiol. 2020;6(8):999–1007.

  10. January CT, Wann LS, Calkins H, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration with the Society of Thoracic Surgeons. Circulation. 2019;140(2):e125–e51.

    Article  PubMed  Google Scholar 

  11. Cheng TO. All teas are not created equal: the Chinese green tea and cardiovascular health. Int J Cardiol. 2006;108(3):301–8.

    Article  PubMed  Google Scholar 

  12. Kuriyama S, Shimazu T, Ohmori K, et al. Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA. 2006;296(10):1255–65.

    Article  CAS  PubMed  Google Scholar 

  13. Stangl V, Dreger H, Stangl K, Lorenz M. Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc Res. 2007;73(2):348–58.

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki J-I, Ogawa M, Futamatsu H, et al. Tea catechins improve left ventricular dysfunction, suppress myocardial inflammation and fibrosis, and alter cytokine expression in rat autoimmune myocarditis. Eur J Heart Fail. 2007;9(2):152–9.

    Article  CAS  PubMed  Google Scholar 

  15. Chakrawarti L, Agrawal R, Dang S, Gupta S, Gabrani R. Therapeutic effects of EGCG: a patent review. Expert Opin Ther Pat. 2016;26(8):907–16.

    Article  CAS  PubMed  Google Scholar 

  16. Hao J, Kim C-H, Ha T-S, Ahn H-Y. Epigallocatechin-3 gallate prevents cardiac hypertrophy induced by pressure overload in rats. J Vet Sci. 2007;8(2):121–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li H-L, Huang Y, Zhang C-N, et al. Epigallocathechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways. Free Radic Biol Med. 2006;40(10):1756–75.

    Article  CAS  PubMed  Google Scholar 

  18. Al Hroob AM, Abukhalil MH, Hussein OE, Mahmoud AM. Pathophysiological mechanisms of diabetic cardiomyopathy and the therapeutic potential of epigallocatechin-3-gallate. Biomed Pharmacother. 2019;109:2155–72.

    Article  PubMed  Google Scholar 

  19. Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai TC. Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients. 2013;5(10):3779–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chapman HA, Wei Y, Montas G, et al. Reversal of TGFβ1-driven profibrotic state in patients with pulmonary fibrosis. N Engl J Med. 2020;382(11):1068–70.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chang J-H, Chang S-L, Hong P-D, et al. Epigallocatechin-3-gallate modulates arrhythmogenic activity and calcium homeostasis of left atrium. Int J Cardiol. 2017;236:174–80.

    Article  PubMed  Google Scholar 

  22. Dange RB, Agarwal D, Masson GS, et al. Central blockade of TLR4 improves cardiac function and attenuates myocardial inflammation in angiotensin II-induced hypertension. Cardiovasc Res. 2014;103(1):17–27.

    Article  CAS  PubMed  Google Scholar 

  23. Gong C, Ding Y, Liang F, et al. Muscarinic receptor regulation of chronic pain-induced atrial fibrillation. Front Cardiovasc Med. 2022;9:934906.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chung C, Kao Y, Yao C, Lin Y, Chen Y. A comparison of left and right atrial fibroblasts reveals different collagen production activity and stress-induced mitogen-activated protein kinase signalling in rats. Acta Physiol (Oxford). 2017;220(4):432–45.

    Article  CAS  Google Scholar 

  25. Ma C, Wang X, Yang F, et al. Circular RNA hsa_circ_0004872 inhibits gastric cancer progression via the miR-224/Smad4/ADAR1 successive regulatory circuit. Mol Cancer. 2020;19(1):157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rittié L. Method for picrosirius red-polarization detection of collagen fibers in tissue sections. Methods Mol Biol. 1627;2017:395–407.

    Google Scholar 

  27. Jiang Y, Song J, Xu Y, et al. Piezo1 regulates intestinal epithelial function by affecting the tight junction protein claudin-1 via the ROCK pathway. Life Sci. 2021;275:119254.

    Article  CAS  PubMed  Google Scholar 

  28. Schüttler D, Bapat A, Kääb S et al. Animal models of atrial fibrillation. Circ Res. 2020;127(1):91–110.

  29. Avitall B, Urbonas A, Urboniene D, et al. The ablation of atrial fibrillation with the loop catheter design: what we have learned from the animal model. Pacing Clin Electrophysiol. 2001;24(7):1138–49.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Wang M, Samuel CS, Widdop RE. Preclinical rodent models of cardiac fibrosis. Br J Pharmacol. 2022;179(5):882–99.

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Han L, Shen M, et al. Serelaxin and the AT2 receptor agonist CGP42112 evoked a similar, nonadditive, cardiac antifibrotic effect in high salt-fed mice that were refractory to Candesartan Cilexetil. ACS Pharmacol Transl Sci. 2020;3(1):76–87.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schnee JM, Hsueh WA. Angiotensin II, adhesion, and cardiac fibrosis. Cardiovasc Res. 2000;46(2):264–8.

    Article  CAS  PubMed  Google Scholar 

  33. Villarreal FJ, Kim NN, Ungab GD, Printz MP, Dillmann WH. Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation. 1993;88(6):2849–61.

    Article  CAS  PubMed  Google Scholar 

  34. Liu Y, Lv H, Tan R, et al. Platelets promote Ang II (angiotensin II)-induced atrial fibrillation by releasing TGF-β1 (transforming growth factor-β1) and interacting with fibroblasts. Hypertension. 2020;76(6):1856–67.

    Article  CAS  PubMed  Google Scholar 

  35. Ge Z, Chen Y, Wang B, et al. MFGE8 attenuates Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation through inhibition of TGF-β1/Smad2/3 pathway. J Mol Cell Cardiol. 2020;139:164–75.

    Article  CAS  PubMed  Google Scholar 

  36. Li XC, Zhuo JL. Intracellular ANG II directly induces in vitro transcription of TGF-beta1, MCP-1, and NHE-3 mRNAs in isolated rat renal cortical nuclei via activation of nuclear AT1a receptors. Am J Phys Cell Phys. 2008;294(4):C1034–C45.

    CAS  Google Scholar 

  37. Liu L-J, Yao F-J, Lu G-H, et al. The role of the Rho/ROCK pathway in Ang II and TGF-β1-induced atrial remodeling. PLoS One. 2016;11(9):e0161625.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zang X, Zhao J, Lu C. PM2.5 inducing myocardial fibrosis mediated by Ang II/ERK1/2/TGF-β signaling pathway in mice model. J Renin-Angiotensin-Aldosterone Syst. 2021;22(1):14703203211003786.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sagris M, Vardas EP, Theofilis P et al. Atrial fibrillation: pathogenesis, predisposing factors, and genetics. Int J Mol Sci. 2021;23(1):6.

  40. Heijman J, Voigt N, Nattel S, Dobrev D. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res. 2014;114(9):1483–99.

    Article  CAS  PubMed  Google Scholar 

  41. Nguyen M-N, Kiriazis H, Gao X-M, Du X-J. Cardiac Fibrosis and Arrhythmogenesis. Compr Physiol. 2017;7(3):1009–49.

    Article  PubMed  Google Scholar 

  42. Berenfeld O, Jalife J. Mechanisms of atrial fibrillation: rotors, ionic determinants, and excitation frequency. Heart Fail Clin. 2016;12(2):167–78.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wijesurendra RS, Casadei B. Mechanisms of atrial fibrillation. Heart. 2019;105(24):1860–7.

    Article  CAS  PubMed  Google Scholar 

  44. López B, Querejeta R, González A, Larman M, Díez J. Collagen cross-linking but not collagen amount associates with elevated filling pressures in hypertensive patients with stage C heart failure: potential role of lysyl oxidase. Hypertension. 2012;60(3):677–83.

    Article  PubMed  Google Scholar 

  45. Qian Y, Meng J, Tang H, et al. Different structural remodelling in atrial fibrillation with different types of mitral valvular diseases. Europace. 2010;12(3):371–7.

    Article  PubMed  Google Scholar 

  46. Adam O, Theobald K, Lavall D, et al. Increased lysyl oxidase expression and collagen cross-linking during atrial fibrillation. J Mol Cell Cardiol. 2011;50(4):678–85.

    Article  CAS  PubMed  Google Scholar 

  47. Da A-U'd, Allen BG. Nattel S. Role of the lysyl oxidase enzyme family in cardiac function and disease. Cardiovasc Res. 2019;115(13):1820–37.

    Google Scholar 

  48. Vallet SD, Ricard-Blum S. Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays Biochem. 2019;63(3):349–64.

    Article  CAS  PubMed  Google Scholar 

  49. Lucero HA, Kagan HM. Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci. 2006;63(19-20):2304–16.

    Article  CAS  PubMed  Google Scholar 

  50. Bi X, Song Y, Song Y, et al. Collagen cross-linking is associated with cardiac remodeling in hypertrophic obstructive cardiomyopathy. J Am Heart Assoc. 2021;10(1):e017752.

    Article  CAS  PubMed  Google Scholar 

  51. Lubrano V, Balzan S. Role of oxidative stress-related biomarkers in heart failure: galectin 3, α1-antitrypsin and LOX-1: new therapeutic perspective? Mol Cell Biochem. 2020;464(1-2):143–52.

    Article  CAS  PubMed  Google Scholar 

  52. Skarpengland T, Skjelland M, Kong XY et al. Increased levels of lectin-like oxidized low-density lipoprotein receptor-1 in ischemic stroke and transient ischemic attack. J Am Heart Assoc. 2018;7(2):e006479.

  53. Gan R-Y, Li H-B, Sui Z-Q, Corke H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): an updated review. Crit Rev Food Sci Nutr. 2018;58(6):924–41.

    Article  CAS  PubMed  Google Scholar 

  54. Romano A, Martel F. The role of EGCG in breast cancer prevention and therapy. Mini-Rev Med Chem. 2021;21(7):883–98.

    Article  CAS  PubMed  Google Scholar 

  55. Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol. 2011;82(12):1807–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang Y, Liu N, Su X, et al. Epigallocatechin-3-gallate attenuates transforming growth factor-beta1 induced epithelial-mesenchymal transition via Nrf2 regulation in renal tubular epithelial cells. Biomed Pharmacother. 2015;70:260–7.

    Article  CAS  PubMed  Google Scholar 

  57. Sun W, Liu X, Zhang H, et al. Epigallocatechin gallate upregulates NRF2 to prevent diabetic nephropathy via disabling KEAP1. Free Radic Biol Med. 2017;108:840–57.

    Article  CAS  PubMed  Google Scholar 

  58. Wang L, Yang G, Yuan L, et al. Green tea catechins effectively altered hepatic fibrogenesis in rats by inhibiting ERK and Smad1/2 phosphorylation. J Agric Food Chem. 2019;67(19):5437–45.

    Article  CAS  PubMed  Google Scholar 

  59. Kanlaya R, Peerapen P, Nilnumkhum A, et al. Epigallocatechin-3-gallate prevents TGF-beta1-induced epithelial-mesenchymal transition and fibrotic changes of renal cells via GSK-3beta/beta-catenin/Snail1 and Nrf2 pathways. J Nutr Biochem. 2020;76:108266.

    Article  CAS  PubMed  Google Scholar 

  60. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang Q, Kelly AP, Wang L, et al. Green tea extract and (-)-epigallocatechin-3-gallate inhibit mast cell-stimulated type I collagen expression in keloid fibroblasts via blocking PI-3K/AkT signaling pathways. J Invest Dermatol. 2006;126(12):2607–13.

    Article  CAS  PubMed  Google Scholar 

  62. Cai Y, Yu SS, Chen TT, et al. EGCG inhibits CTGF expression via blocking NF-kappaB activation in cardiac fibroblast. Phytomedicine. 2013;20(2):106–13.

    Article  CAS  PubMed  Google Scholar 

  63. Kochi T, Shimizu M, Terakura D, et al. Non-alcoholic steatohepatitis and preneoplastic lesions develop in the liver of obese and hypertensive rats: suppressing effects of EGCG on the development of liver lesions. Cancer Lett. 2014;342(1):60–9.

    Article  CAS  PubMed  Google Scholar 

  64. Chen J, Du L, Li J, Song H. Epigallocatechin-3-gallate attenuates cadmium-induced chronic renal injury and fibrosis. Food Chem Toxicol. 2016;96:70–8.

    Article  CAS  PubMed  Google Scholar 

  65. Laczko R, Csiszar K. Lysyl oxidase (LOX): functional contributions to signaling pathways. Biomolecules. 2020;10(8):1093.

  66. Voloshenyuk TG, Landesman ES, Khoutorova E, Hart AD, Gardner JD. Induction of cardiac fibroblast lysyl oxidase by TGF-β1 requires PI3K/Akt, Smad3, and MAPK signaling. Cytokine. 2011;55(1):90–7.

    Article  CAS  PubMed  Google Scholar 

  67. Lambert JD, Elias RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys. 2010;501(1):65–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang L-X, Shi Y-L, Zhang L-J et al. Inhibitory effects of (-)-epigallocatechin-3-gallate on esophageal cancer. Molecules (Basel, Switzerland). 2019;24(5):954.

  69. Higdon JV, Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr. 2003;43(1):89–143.

  70. Cai Y, Yu S-S, Chen T-T, et al. EGCG inhibits CTGF expression via blocking NF-κB activation in cardiac fibroblast. Phytomedicine. 2013;20(2):106–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Scientific Research Project of National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University (No. Z2018B19), and 1·3·5 project for disciplines of excellence–Clinical Research Incubation Project, West China Hospital, Sichuan University (No. 2019HXFH029), the Major Science and Technology Project of Sichuan Province, China (No. 2021YFS0121), and Technology innovation research and development project of Chengdu Science and Technology Bureau (No. 2019YF05-00183-SN), and the Science and Technology Project of Sichuan Province Health Commission, China (No. 21PJ035).

Author information

Authors and Affiliations

Authors

Contributions

Tao Li: Conceptualization, Methodology, Investigation, Software, Validation, Data curation, Formal analysis, Writing – original draft, Visualization; Tong Qi: Conceptualization, Methodology, Validation, Data curation, Formal analysis, Writing – review & editing; Zhengjie Wang: Formal analysis, Resources, Writing – review & editing, Visualization; Ziqi Yang: Software, Resources, Writing – review & editing; Yiren Sun: Conduct animal experiments; Jie Cai: Data Collection; Qiyue Xu: Writing – review & editing; Yuan Lu: Writing – review & editing; Xuemei Liu: Statistical analysis; Ke Lin: Conceptualization, Writing – review & editing, Supervision, Project administration, Funding acquisition, Yongjun Qian: Conceptualization, Writing – review & editing, Supervision, Project administration, Funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yongjun Qian.

Ethics declarations

Ethics Approval

All applicable international national and/or institutional animal care and use guidelines have been followed. This article does not contain any studies conducted by any author with any human participants.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no conflict of interest.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Tong, Q., Wang, Z. et al. Epigallocatechin-3-Gallate Inhibits Atrial Fibrosis and Reduces the Occurrence and Maintenance of Atrial Fibrillation and its Possible Mechanisms. Cardiovasc Drugs Ther (2023). https://doi.org/10.1007/s10557-023-07447-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10557-023-07447-y

Keywords

Navigation