Skip to main content
Log in

Effects of Teneligliptin on the Progressive Left Ventricular Diastolic Dysfunction in Patients with Type 2 Diabetes Mellitus in Open-Label, Marker-Stratified Randomized, Parallel-Group Comparison, Standard Treatment-Controlled Multicenter Trial (TOPLEVEL Study): Rationale and Study Design

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Background and Aims

Diabetes mellitus (DM) can cause left ventricular (LV) diastolic dysfunction, leading to heart failure with preserved ejection fraction (HFpEF). Dipeptidyl peptidase IV (DPP-IV) inhibitors have failed to reduce hospitalization due to HF in type 2 DM (T2D) patients in a large-scale clinical trial, despite their cardiovascular protective effects. Therefore, it is important to investigate whether DPP-IV inhibitors can improve LV diastolic dysfunction in T2D patients. The aim of the study was to evaluate whether teneligliptin, the strongest of the DPP-IV inhibitors, improves LV dysfunction or prevents the worsening of LV diastolic function in T2D patients.

Methods

The TOPLEVEL study is designed as an open-labeled, marker-stratified randomized, parallel-group comparison, standard treatment-controlled multicenter study. TOPLEVEL includes two marker-defined subgroups to give treatment recommendations for T2D patients with normal (E/e′ < 8) or impaired LV diastolic function (E/e′ ≥ 8), where E/e′ is the ratio of peak velocity of early transmitral diastolic filling by echocardiography to early diastolic mitral annular velocity by tissue Doppler echocardiography as LV diastolic function. Patients are randomly assigned to either teneligliptin (20 or 40 mg) or the standard treatment group. All patients are followed up for 2 years. The primary endpoint measure is the change in E/e′ from baseline and 2 years after enrollment.

Conclusion and Perspectives

TOPLEVEL is a clinical trial of teneligliptin targeting LV diastolic dysfunction in T2D patients. This study demonstrates the effectiveness of DPP-IV inhibitors on LV diastolic dysfunction, an important surrogate endpoint to predict the cardiovascular outcomes of HFpEF (UMIN000014589).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data and Materials

To avoid potential bias of the analysis, the data set supporting the conclusions of this article will not be available until the final report of this trial is published.

References

  1. Devereux RB, Roman MJ, Paranicas M, O'Grady MJ, Lee ET, Welty TK, et al. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation. 2000;101(19):2271–6.

    Article  CAS  PubMed  Google Scholar 

  2. Eguchi K, Boden-Albala B, Jin Z, Rundek T, Sacco RL, Homma S, et al. Association between diabetes mellitus and left ventricular hypertrophy in a multiethnic population. Am J Cardiol. 2008;101(12):1787–91.

    Article  PubMed  PubMed Central  Google Scholar 

  3. From AM, Scott CG, Chen HH. The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol. 2010;55(4):300–5.

    Article  PubMed  Google Scholar 

  4. Vinereanu D, Nicolaides E, Tweddel AC, Madler CF, Holst B, Boden LE, et al. Subclinical left ventricular dysfunction in asymptomatic patients with type II diabetes mellitus, related to serum lipids and glycated haemoglobin. Clin Sci (London, England : 1979). 2003;105(5):591–9.

    Article  CAS  Google Scholar 

  5. Aneja A, Tang WH, Bansilal S, Garcia MJ, Farkouh ME. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med. 2008;121(9):748–57.

    Article  PubMed  Google Scholar 

  6. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355(3):251–9.

    Article  CAS  PubMed  Google Scholar 

  7. Gomez N, Touihri K, Matheeussen V, Mendes Da Costa A, Mahmoudabady M, Mathieu M, et al. Dipeptidyl peptidase IV inhibition improves cardiorenal function in overpacing-induced heart failure. Eur J Heart Fail. 2012;14(1):14–21.

    Article  CAS  PubMed  Google Scholar 

  8. Shigeta T, Aoyama M, Bando YK, Monji A, Mitsui T, Takatsu M, et al. Dipeptidyl peptidase-4 modulates left ventricular dysfunction in chronic heart failure via angiogenesis-dependent and -independent actions. Circulation. 2012;126(15):1838–51.

    Article  CAS  PubMed  Google Scholar 

  9. Son JW, Kim S. Dipeptidyl peptidase 4 inhibitors and the risk of cardiovascular disease in patients with type 2 diabetes: a tale of three studies. Diabetes Metab J. 2015;39(5):373–83.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fukuda-Tsuru S, Anabuki J, Abe Y, Yoshida K, Ishii S. A novel, potent, and long-lasting dipeptidyl peptidase-4 inhibitor, teneligliptin, improves postprandial hyperglycemia and dyslipidemia after single and repeated administrations. Eur J Pharmacol. 2012;696(1–3):194–202.

    Article  CAS  PubMed  Google Scholar 

  11. Yoshihara F, Imazu M, Hamasaki T, Anzai T, Yasuda S, Ito S, et al. An exploratory study of Dapagliflozin for the attenuation of albuminuria in patients with heart failure and type 2 diabetes mellitus (DAPPER). Cardiovasc Drugs Ther. 2018;32(2):183–90.

    Article  PubMed  Google Scholar 

  12. Gordon Lan K, DeMets DL. Discrete sequential boundaries for clinical trials. Biometrika. 1983;70(3):659–63.

    Article  Google Scholar 

  13. Cui L, Hung HM, Wang SJ. Modification of sample size in group sequential clinical trials. Biometrics. 1999;55(3):853–7.

    Article  CAS  PubMed  Google Scholar 

  14. Matsushita K, Blecker S, Pazin-Filho A, Bertoni A, Chang PP, Coresh J, et al. The association of hemoglobin a1c with incident heart failure among people without diabetes: the atherosclerosis risk in communities study. Diabetes. 2010;59(8):2020–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gonzalez-Vilchez F, Ayuela J, Ares M, Pi J, Castillo L, Martin-Duran R. Oxidative stress and fibrosis in incipient myocardial dysfunction in type 2 diabetic patients. Int J Cardiol. 2005;101(1):53–8.

    Article  PubMed  Google Scholar 

  16. Ihm SH, Youn HJ, Shin DI, Jang SW, Park CS, Kim PJ, et al. Serum carboxy-terminal propeptide of type I procollagen (PIP) is a marker of diastolic dysfunction in patients with early type 2 diabetes mellitus. Int J Cardiol. 2007;122(3):e36–8.

    Article  PubMed  Google Scholar 

  17. Borlaug BA, Melenovsky V, Redfield MM, Kessler K, Chang HJ, Abraham TP, et al. Impact of arterial load and loading sequence on left ventricular tissue velocities in humans. J Am Coll Cardiol. 2007;50(16):1570–7.

    Article  PubMed  Google Scholar 

  18. Saiki H, Moulay G, Guenzel AJ, Liu W, Decklever TD, Classic KL, et al. Experimental cardiac radiation exposure induces ventricular diastolic dysfunction with preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2017;313(2):H392–h407.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107(5):714–20.

    Article  PubMed  Google Scholar 

  20. Elzinga G, Westerhof N. Pressure and flow generated by the left ventricle against different impedances. Circ Res. 1973;32(2):178–86.

    Article  CAS  PubMed  Google Scholar 

  21. Hori M, Inoue M, Kitakaze M, Tsujioka K, Ishida Y, Fukunami M, et al. Ejection timing as a major determinant of left ventricular relaxation rate in isolated perfused canine heart. Circ Res. 1984;55(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  22. From AM, Scott CG, Chen HH. Changes in diastolic dysfunction in diabetes mellitus over time. Am J Cardiol. 2009;103(10):1463–6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. van den Hurk K, Alssema M, Kamp O, Henry RM, Stehouwer CD, Smulders YM, et al. Independent associations of glucose status and arterial stiffness with left ventricular diastolic dysfunction: an 8-year follow-up of the Hoorn study. Diabetes Care. 2012;35(6):1258–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289(2):194–202.

    Article  PubMed  Google Scholar 

  25. Okura H, Kubo T, Asawa K, Toda I, Yoshiyama M, Yoshikawa J, et al. Elevated E/E' predicts prognosis in congestive heart failure patients with preserved systolic function. Circ J. 2009;73(1):86–91.

    Article  PubMed  Google Scholar 

  26. Akiyama E, Sugiyama S, Matsuzawa Y, Konishi M, Suzuki H, Nozaki T, et al. Incremental prognostic significance of peripheral endothelial dysfunction in patients with heart failure with normal left ventricular ejection fraction. J Am Coll Cardiol. 2012;60(18):1778–86.

    Article  PubMed  Google Scholar 

  27. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation. 2000;102(15):1788–94.

    Article  CAS  PubMed  Google Scholar 

  28. Mullens W, Borowski AG, Curtin RJ, Thomas JD, Tang WH. Tissue Doppler imaging in the estimation of intracardiac filling pressure in decompensated patients with advanced systolic heart failure. Circulation. 2009;119(1):62–70.

    Article  PubMed  Google Scholar 

  29. Mitter SS, Shah SJ, Thomas JD. A test in context: E/A and E/e' to Assess Diastolic Dysfunction and LV Filling Pressure. J Am Coll Cardiol. 2017;69(11):1451–64.

    Article  Google Scholar 

  30. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)developed with the special contribution of the heart failure association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200.

    Article  PubMed  Google Scholar 

  31. Takahashi A, Ihara M, Yamazaki S, Asanuma H, Asakura M, Kitakaze M. Impact of either GLP-1 agonists or DPP-4 inhibitors on pathophysiology of heart failure. Int Heart J. 2015;56(4):372–6.

    Article  CAS  PubMed  Google Scholar 

  32. Ihara M, Asanuma H, Yamazaki S, Kato H, Asano Y, Shinozaki Y, et al. An interaction between glucagon-like peptide-1 and adenosine contributes to cardioprotection of a dipeptidyl peptidase 4 inhibitor from myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2015;308(10):H1287–97.

    Article  CAS  PubMed  Google Scholar 

  33. Aoyama M, Kawase H, Bando YK, Monji A, Murohara T. Dipeptidyl peptidase 4 inhibition alleviates shortage of circulating glucagon-like Peptide-1 in heart failure and mitigates myocardial remodeling and apoptosis via the exchange protein directly activated by cyclic AMP 1/Ras-related protein 1 Axis. Circ Heart Fail. 2016;9(1):e002081.

    Article  CAS  PubMed  Google Scholar 

  34. Pyke C, Heller RS, Kirk RK, Orskov C, Reedtz-Runge S, Kaastrup P, et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology. 2014;155(4):1280–90.

    Article  CAS  PubMed  Google Scholar 

  35. Takashima S, Fujita H, Fujishima H, Shimizu T, Sato T, Morii T, et al. Stromal cell-derived factor-1 is upregulated by dipeptidyl peptidase-4 inhibition and has protective roles in progressive diabetic nephropathy. Kidney Int. 2016;90(4):783–96.

    Article  CAS  PubMed  Google Scholar 

  36. Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S, et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med. 2013;19(5):567–75.

    Article  CAS  PubMed  Google Scholar 

  37. Lee MY, Tsai KB, Hsu JH, Shin SJ, Wu JR, Yeh JL. Liraglutide prevents and reverses monocrotaline-induced pulmonary arterial hypertension by suppressing ET-1 and enhancing eNOS/sGC/PKG pathways. Sci Rep. 2016;6:31788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Ms. M. Yoda, Ms. M. Takahashi, Ms. R. Umezawa, and Ms. M. Saida for their secretarial assistance.

Funding

This study was conducted with funding provided by the Mitsubishi Tanabe Pharma Corporation.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

MI conceived the study. MI and SI wrote the manuscript. TH performed statistical analyses and provided the biostatistical study design. MK conceived and supervised the study and is the Principal Investigator on the grant. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Masafumi Kitakaze.

Ethics declarations

Conflict of Interest

Persons from Mitsubishi Tanabe Pharma Corporation were not involved in conducting this study and analysis, and the intentions of Mitsubishi Tanabe Pharma Corporation are not reflected in the results or interpretations of this study.

Disclosure

Drs. Imadu, Ito, and Hamasaki have nothing to disclose. Dr. Nakano is now an employee of GlaxoSmithKline K.K. Dr. Kitakaze reports receiving grants from the Japanese government during the course of the study: grants from the Japanese government, grants from the Japan Heart Foundation, grants from the Japan Cardiovascular Research Foundation, grants and personal fees from Asteras, personal fees from Daiichi-sankyo, grants and personal fees from Pfizer, grants and personal fees from Ono, personal fees from Bayer, grants from Novartis, grants and personal fees from Mitubishi Tanabe Pharma, personal fees from Kowa, personal fees from MSD, grants from Nihon Kohden, personal fees from Shionogi, personal fees from AstraZeneca, grants and personal fees from AstraZeneca, personal fees from Taisho-Toyama, personal fees from Toyama-Kagaku, grants and personal fees from Kureha, and personal fees from Toaeiyo, outside of the currently proposed work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imazu, M., Nakano, A., Ito, S. et al. Effects of Teneligliptin on the Progressive Left Ventricular Diastolic Dysfunction in Patients with Type 2 Diabetes Mellitus in Open-Label, Marker-Stratified Randomized, Parallel-Group Comparison, Standard Treatment-Controlled Multicenter Trial (TOPLEVEL Study): Rationale and Study Design. Cardiovasc Drugs Ther 33, 363–370 (2019). https://doi.org/10.1007/s10557-019-06871-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-019-06871-3

Keywords

Navigation