Skip to main content

Advertisement

Log in

Systematic Review of Methods Used for the Microvascular Assessment of Peripheral Arterial Disease

  • REVIEW ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Lower extremity peripheral arterial disease (LEAD) is increasing in prevalence in low with approximately 202 million people affected with LEAD worldwide. Certain subgroups of individuals (cigarette smokers, diabetics) that are particularly high risk for LEAD and major adverse limb events (MALE). Conventionally, the ankle-brachial index (ABI) is the recommended screening test for LEAD. However, the ABI has several limitations, particularly in patients with diabetes. These limitations include increased measurement variability with severity of LEAD, non-compressible calcified arteries inability to detect arterial disease distal to the ankle precludes assessment of disease in the foot where many ulcers can occur, and underestimation of the extent of microvascular occlusive disease. In this systematic review, we discuss methods used for the assessment of microvascular disease and compare outcomes that encompass microvascular flow with the ABI and toe-brachial index (TBI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Writing Committee M, Gerhard-Herman MD, Gornik HL, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary. Vasc Med 2017,22:NP1-NP43.

  2. Aboyans V, Ricco JB, Bartelink MEL, et al. ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: the European Stroke Organization (ESO) the task force for the diagnosis and treatment of peripheral arterial diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J 2018, 39. 2017:763–816.

  3. Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, Creager MA, Olin JW, et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 2001;286:1317–24.

    Article  PubMed  CAS  Google Scholar 

  4. Kumbhani DJ, Steg PG, Cannon CP, Eagle KA, Smith SC Jr, Goto S, et al. Statin therapy and long-term adverse limb outcomes in patients with peripheral artery disease: insights from the REACH registry. Eur Heart J. 2014;35:2864–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Joosten MM, Pai JK, Bertoia ML, Rimm EB, Spiegelman D, Mittleman MA, et al. Associations between conventional cardiovascular risk factors and risk of peripheral artery disease in men. JAMA. 2012;308:1660–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bunte MC, Jacob J, Nudelman B, Shishehbor MH. Validation of the relationship between ankle-brachial and toe-brachial indices and infragenicular arterial patency in critical limb ischemia. Vasc Med. 2015;20:23–9.

    Article  PubMed  Google Scholar 

  7. Whitney RJ. The measurement of changes in human limb-volume by means of a mercury-inrubber strain gauge. J Physiol. 1949;109:Proc, 5.

    PubMed  Google Scholar 

  8. Whitney RJ. The measurement of volume changes in human limbs. J Physiol. 1953;121:1–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Myers K. The investigation of peripheral arterial disease by strain gauge plethysmography. Angiology. 1964;15:293–304.

    Article  PubMed  CAS  Google Scholar 

  10. Strandness DE Jr, Bell JW. Peripheral vascular disease: diagnosis and objective evaluation using a mercury strain gauge. Ann Surg. 1965;161:4–35.

    PubMed  Google Scholar 

  11. Dormandy JA, Hoare E, Colley J, Arrowsmith DE, Dormandy TL. Clinical, haemodynamic, rheological, and biochemical findings in 126 patients with intermittent claudication. Br Med J. 1973;4:576–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Modesti PA, Boddi M, Poggesi L, Gensini GF, Neri Serneri GG. Transcutaneous oximetry in evaluation of the initial peripheral artery disease in diabetics. Angiology. 1987;38:457–62.

    Article  PubMed  CAS  Google Scholar 

  13. Killewich LA, Tuvdendorj D, Bahadorani J, Hunter GC, Wolfe RR. Amino acids stimulate leg muscle protein synthesis in peripheral arterial disease. J Vasc Surg. 2007;45:554–559; discussion 559-560.

    Article  PubMed  Google Scholar 

  14. Hoyer C, Sandermann J, Petersen LJ. Randomised diagnostic accuracy study of a fully automated portable device for diagnosing peripheral arterial disease by measuring the toe-brachial index. Eur J Vasc Endovasc Surg. 2013;45:57–64.

    Article  PubMed  CAS  Google Scholar 

  15. Burton-Opitz R. The effect of changes in temperature upon the viscosity of the “Living” blood. J Exp Med. 1906;8:59–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cranley JJ, Fogarty TJ, Krause RJ, Strasser ES, Hafner CD. Phlebotomy for moderate erythrocythemia. Improvement in peripheral circulation and myocardial function in patients with obliterative arterial disease of the lower extremities. JAMA. 1963;186:206–10.

    Article  PubMed  CAS  Google Scholar 

  17. Valnes K, Lorentsen E, Holter B. Calf blood flow and systolic blood pressure in patients with hyperviscosity of the blood. Angiology. 1979;30:313–6.

    Article  PubMed  CAS  Google Scholar 

  18. Dormandy JA, Hoare E, Khattab AH, Arrowsmith DE, Dormandy TL. Prognostic significance of rheological and biochemical findings in patients with intermittent claudication. Br Med J. 1973;4:581–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Dormandy JA, Hoare E, Postlethwaite J. Importance of blood viscosity. Rheological claudication. Proc R Soc Med. 1974;67:446–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Ernst EE, Matrai A. Intermittent claudication, exercise, and blood rheology. Circulation. 1987;76:1110–4.

    Article  PubMed  CAS  Google Scholar 

  21. Lowe GD, Fowkes FG, Dawes J, Donnan PT, Lennie SE, Housley E. Blood viscosity, fibrinogen, and activation of coagulation and leukocytes in peripheral arterial disease and the normal population in the Edinburgh Artery Study. Circulation. 1993;87:1915–20.

    Article  PubMed  CAS  Google Scholar 

  22. Gyawali P, Richards RS, Tinley P, Nwose EU. Hemorheology, ankle brachial pressure index (ABPI) and toe brachial pressure index (TBPI) in metabolic syndrome. Microvasc Res. 2014;95:31–6.

    Article  PubMed  Google Scholar 

  23. Huch A, Huch R, Arner B, Rooth G. Continuous transcutaneous oxygen tension measured with a heated electrode. Scand J Clin Lab Invest. 1973;31:269–75.

    Article  PubMed  CAS  Google Scholar 

  24. Karanfilian RG, Lynch TG, Zirul VT, Padberg FT, Jamil Z, Hobson RW 2nd. The value of laser Doppler velocimetry and transcutaneous oxygen tension determination in predicting healing of ischemic forefoot ulcerations and amputations in diabetic and nondiabetic patients. J Vasc Surg. 1986;4:511–6.

    Article  PubMed  CAS  Google Scholar 

  25. Fairs SL, Ham RO, Conway BA, Roberts VC. Limb perfusion in the lower limb amputee—a comparative study using a laser Doppler flowmeter and a transcutaneous oxygen electrode. Prosthetics Orthot Int. 1987;11:80–4.

    CAS  Google Scholar 

  26. Gebuhr P, Jorgensen JP, Vollmer-Larsen B, Nielsen SL, Alsbjorn B. Estimation of amputation level with a laser Doppler flowmeter. J Bone Joint Surg Br. 1989;71:514–7.

    Article  PubMed  CAS  Google Scholar 

  27. Mayrovitz HN, Larsen PB. Functional microcirculatory impairment: a possible source of reduced skin oxygen tension in human diabetes mellitus. Microvasc Res. 1996;52:115–26.

    Article  PubMed  CAS  Google Scholar 

  28. Castronuovo JJ Jr, Adera HM, Smiell JM, Price RM. Skin perfusion pressure measurement is valuable in the diagnosis of critical limb ischemia. J Vasc Surg. 1997;26:629–37.

    Article  PubMed  Google Scholar 

  29. Leonardo G, Arpaia MR, Del Guercio R. A new method for the quantitative assessment of arterial insufficiency of the limbs: cutaneous postischemic hyperemia test by laser Doppler. Angiology. 1987;38:378–85.

    Article  PubMed  CAS  Google Scholar 

  30. de Graaff JC, Ubbink DT, Legemate DA, de Haan RJ, Jacobs MJ. The usefulness of a laser Doppler in the measurement of toe blood pressures. J Vasc Surg. 2000;32:1172–9.

    Article  PubMed  Google Scholar 

  31. Hoyer C, Sandermann J, Paludan JP, Pavar S, Petersen LJ. Diagnostic accuracy of laser Doppler flowmetry versus strain gauge plethysmography for segmental pressure measurement. J Vasc Surg. 2013;58:1563–70.

    Article  PubMed  Google Scholar 

  32. Lal C, Unni SN. Correlation analysis of laser Doppler flowmetry signals: a potential non-invasive tool to assess microcirculatory changes in diabetes mellitus. Med Biol Eng Comput. 2015;53:557–66.

    Article  PubMed  Google Scholar 

  33. Hodges GJ, Nawaz S, Tew GA. Evidence that reduced nitric oxide signal contributes to cutaneous microvascular dysfunction in peripheral arterial disease. Clin Hemorheol Microcirc. 2015;59:83–95.

    PubMed  CAS  Google Scholar 

  34. Cho YI, Cho DJ, Rosenson RS. Endothelial shear stress and blood viscosity in peripheral arterial disease. Curr Atheroscler Rep. 2014;16:404.

    Article  PubMed  Google Scholar 

  35. Gazzaruso C, Coppola A, Falcone C, Luppi C, Montalcini T, Baffero E, et al. Transcutaneous oxygen tension as a potential predictor of cardiovascular events in type 2 diabetes: comparison with ankle-brachial index. Diabetes Care. 2013;36:1720–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Benhamou Y, Edet S, Begarin L, Cailleux N, Hanoy M, Bessin C, et al. Transcutaneous oxymetry as predictive test of peripheral vascular revascularization in haemodialysis population. Nephrol Dial Transplant. 2012;27:2066–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Rosenson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Rosenson, R.S. Systematic Review of Methods Used for the Microvascular Assessment of Peripheral Arterial Disease. Cardiovasc Drugs Ther 32, 301–310 (2018). https://doi.org/10.1007/s10557-018-6797-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-018-6797-7

Keywords

Navigation