Skip to main content

Advertisement

Log in

The Incidence and the Prognostic Impact of Acute Kidney Injury in Acute Myocardial Infarction Patients: Current Preventive Strategies

  • REVIEW ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Acute kidney injury (AKI) is one of the most common complications during hospitalization in various clinical settings. The goal of this review was to assess the incidence of AKI in acute myocardial infarction patients (AMI), how this incidence is affected by the diverse definitions, and if there is variability in the reported rates over recent years. Additionally, we sought to appraise the impact of AKI on short- and long-term prognosis of these patients. Finally, we report on the current preventive measures as they are suggested in the current guidelines of various societies, we comment on the evidence that support them, and we review the literature for other proposed therapeutic strategies, which either failed to prove their efficacy or they are not adequately confirmed yet. Due to the heterogeneity in AKI definition and in the population studied of the published data, the incidence of AKI ranged from 5.2 to 59%. A recent meta-analysis reported a median value of 15.8%. All studies assessing AKI-related prognosis in AMI patients suggested that presence of AKI has detrimental effect on patients prognosis, raising mortality two- to threefold not only during the 30 first days but also during the first year after the acute event. Various treatment modalities have been proposed for prevention of AKI in AMI patients; however, the majority of them failed to prove their efficacy in the clinical trial arena. Hydration, use of iso- or low-osmolar agents at the lowest possible dose during coronary interventions, and use of statins have been proposed among others. Nonetheless, the prevalence of AKI after an AMI still remains high today and therefore it is crucial for the practicing physician to be aware of its presence and for the scientific community to identify novel measures for a more efficacious prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tang Y, Chen J, Huang K, et al. The incidence, risk factors and in-hospital mortality of acute kidney injury in patients after abdominal aortic aneurysm repair surgery. BMC Nephrol. 2017;18:184.

    Article  PubMed  PubMed Central  Google Scholar 

  2. James MT, Samuel SM, Manning MA, et al. Contrast-induced acute kidney injury and risk of adverse clinical outcomes after coronary angiography: a systematic review and meta-analysis. Circ Cardiovasc Interv. 2013;6:37–43.

    Article  PubMed  Google Scholar 

  3. Pickering JW, James MT, Palmer SC. Acute kidney injury and prognosis after cardiopulmonary bypass: a meta-analysis of cohort studies. Am J Kidney Dis. 2015;65:283–93.

    Article  PubMed  Google Scholar 

  4. García-Gigorro R, Dominguez Aguado H, Barea Mendoza JA, Viejo Moreno R, Sánchez Izquierdo JA, Montejo-González JC. Short- and long-term prognosis of critically-ill patients referred to the ICU from the Emergency Department of a tertiary hospital. Med Clin (Barc). 2017;148:197–203.

    Article  Google Scholar 

  5. Ronco C, Lullo LD. Cardiorenal syndrome. Heart Fail Clin. 2014;10:251–80.

    Article  PubMed  Google Scholar 

  6. Rossaint J, Zarbock A. Acute kidney injury: definition, diagnosis and epidemiology. Minerva Urol Nefrol. 2016;68:49–57.

    PubMed  Google Scholar 

  7. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lameire N, Kellum JA, Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.

    Article  Google Scholar 

  10. Kuji S, Kosuge M, Kimura K, et al. Impact of acute kidney injury on in-hospital outcomes of patients with acute myocardial infarction―results from the Japanese Registry of Acute Myocardial Infarction Diagnosed by Universal Definition (J-MINUET) Substudy. Circ J. 2017;81:733–9.

    Article  PubMed  Google Scholar 

  11. Nakahashi H, Kosuge M, Sakamaki K, et al. Combined impact of chronic kidney disease and contrast-induced nephropathy on long-term outcomes in patients with ST-segment elevation acute myocardial infarction who undergo primary percutaneous coronary intervention. Heart Vessel. 2017;32:22–9.

    Article  Google Scholar 

  12. Tziakas D, Chalikias G, Kareli D, et al. Spot urine albumin to creatinine ratio outperforms novel acute kidney injury biomarkers in patients with acute myocardial infarction. Int J Cardiol. 2015;197:48–55.

    Article  PubMed  Google Scholar 

  13. Yuan Y, Qiu H, Hu XY, et al. Risk factors of contrast-induced acute kidney injury in patients undergoing emergency percutaneous coronary intervention. Chin Med J. 2017;130:45–50.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Iwakura K, Okamura A, Koyama Y, Fujii K. Early prediction of acute kidney injury after acute myocardial infarction by a clinical score. J Am Coll Cardiol. 2016;67(Suppl):478.

    Article  Google Scholar 

  15. Farhan S, Vogel B, Tentzeris I, et al. Contrast induced acute kidney injury in acute coronary syndrome patients: a single centre experience. Eur Heart J Acute Cardiovasc Care. 2016;5:55–61.

    Article  PubMed  Google Scholar 

  16. Shacham Y, Gal-Oz A, Ben-Shoshan J, Keren G, Arbel Y. Prognostic implications of acute renal impairment among ST elevation myocardial infarction patients with preserved left ventricular function. Cardiorenal Med. 2016;6:143–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Centola M, Lucreziotti S, Salerno-Uriarte D, et al. A comparison between two different definitions of contrast-induced acute kidney injury in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Int J Cardiol. 2016;210:4–9.

    Article  PubMed  Google Scholar 

  18. Velibey Y, Oz A, Tanik O, et al. Platelet-to-lymphocyte ratio predicts contrast-induced acute kidney injury in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Angiology. 2017;68:419–27.

    Article  PubMed  Google Scholar 

  19. Neves D, Belo A, Damásio AF, et al. Acute kidney injury in acute coronary syndromes—an important multifactorial consequence. Rev Port Cardiol. 2016;35:415–21.

    PubMed  Google Scholar 

  20. Park SD, Moon J, Kwon SW, et al. Prognostic impact of combined contrast-induced acute kidney injury and hypoxic liver injury in patients with ST elevation myocardial infarction undergoing primary percutaneous coronary intervention: results from INTERSTELLAR registry. PLoS One. 2016;11:e0159416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Moriyama N, Ishihara M, Noguchi T, et al. Early development of acute kidney injury is an independent predictor of in-hospital mortality in patients with acute myocardial infarction. J Cardiol. 2017;69:79–83.

    Article  PubMed  Google Scholar 

  22. Kuboyama O, Tokunaga T. The prevalence and prognosis of contrast-induced acute kidney injury according to the definition in patients with acute myocardial infarction who underwent primary percutaneous coronary intervention. Clin Trials Regul Sci Cardiol. 2016;13:29–33.

    Article  Google Scholar 

  23. Karamasis G, Al-Janabi F, Mohdnazri S, et al. Incidence and prevention of contrast induced acute kidney injury in ST elevation myocardial infarction patients undergoing primary percutaneous coronary intervention. J Am Coll Cardiol. 2016;68(Suppl):B157.

    Article  Google Scholar 

  24. Matějka J, Varvařovský I, Rozsíval V, et al. Heart failure is the strongest predictor of acute kidney injury in patients undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction. Kardiol Pol. 2016;74:18–24.

    Article  PubMed  Google Scholar 

  25. Warren J, Mehran R, Baber U, et al. Incidence and impact of acute kidney injury in patients with acute coronary syndromes treated with coronary artery bypass grafting: insights from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) and Acute Catheterization and Urgent Intervention Triage Strategy (ACUITY) trials. Am Heart J. 2016;171:40–7.

    Article  PubMed  Google Scholar 

  26. Marenzi G, Cosentino N, Moltrasio M, et al. Acute kidney injury definition and in-hospital mortality in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. J Am Heart Assoc. 2016;5:e003522.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tung YC, Chang CH, Chen YC, Chu PH. Combined biomarker analysis for risk of acute kidney injury in patients with ST-segment elevation myocardial infarction. PLoS One. 2015;10:e0125282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kocas B, Abaci O, Cetinkal G, et al. Contrast-induced acute kidney injury in patients with non-ST-segment elevation myocardial infarction undergoing early versus delayed invasive strategy. Int J Cardiol. 2016;203:638–9.

    Article  PubMed  Google Scholar 

  29. Crimi G, Leonardi S, Costa F, et al. Incidence, prognostic impact, and optimal definition of contrast-induced acute kidney injury in consecutive patients with stable or unstable coronary artery disease undergoing percutaneous coronary intervention. Insights from the all-comer PRODIGY trial. Catheter Cardiovasc Interv. 2015;86:E19–27.

    Article  PubMed  Google Scholar 

  30. Vavalle JP, van Diepen S, Clare RM, et al. Renal failure in patients with ST-segment elevation acute myocardial infarction treated with primary percutaneous coronary intervention: predictors, clinical and angiographic features, and outcomes. Am Heart J. 2016;173:57–66.

    Article  PubMed  Google Scholar 

  31. Turan B, Erkol A, Gül M, Fındıkçıoğlu U, Erden İ. Effect of contrast-induced nephropathy on the long-term outcome of patients with non-ST segment elevation myocardial infarction. Cardiorenal Med. 2015;5:116–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Toso A, Servi SD, Leoncini M, et al. Acute kidney injury in elderly patients with non-ST elevation acute coronary syndrome: insights from the Italian elderly: ACS study. Angiology. 2015;66:826–30.

    Article  CAS  PubMed  Google Scholar 

  33. Mody P, Wang T, McNamara R, et al. Association of in hospital acute kidney injury with long term outcomes in survivors of acute myocardial infarction: insight from the NCDR. Circulation. 2015;132:A13975.

    Google Scholar 

  34. Gaskina A, Villevalde S, Kobalava Z, et al. Predictors and outcomes of contrast-induced acute kidney injury in patients with primary percutaneous intervention. J Hypertens. 2015;33(Suppl 1):e17.

    Article  PubMed  Google Scholar 

  35. Giacoppo D, Madhavan MV, Baber U, et al. Impact of contrast-induced acute kidney injury after percutaneous coronary intervention on short- and long-term outcomes. Circ Cardiovasc Interv. 2015;8:e002475.

    Article  CAS  PubMed  Google Scholar 

  36. Akin F, Celik O, Altun I, et al. Relation of red cell distribution width to contrast-induced acute kidney injury in patients undergoing a primary percutaneous coronary intervention. Coron Artery Dis. 2015 Jun;26(4):289–95.

    Article  PubMed  Google Scholar 

  37. Watabe H, Sato A, Hoshi T, et al. Association of contrast-induced acute kidney injury with long-term cardiovascular events in acute coronary syndrome patients with chronic kidney disease undergoing emergent percutaneous coronary intervention. Int J Cardiol. 2014;174:57–63.

    Article  PubMed  Google Scholar 

  38. Kul S, Uyarel H, Kucukdagli OT, et al. Zwolle risk score predicts contrast-induced acute kidney injury in STEMI patients undergoing PCI. Herz. 2015;40:109–15.

    Article  CAS  PubMed  Google Scholar 

  39. Shacham Y, Gal-Oz A, Leshem-Rubinow E, et al. Association of admission hemoglobin levels and acute kidney injury among myocardial infarction patients treated with primary percutaneous intervention. Can J Cardiol. 2015;31:50–5.

    Article  PubMed  Google Scholar 

  40. Narula A, Mehran R, Weisz G, et al. Contrast-induced acute kidney injury after primary percutaneous coronary intervention: results from the HORIZONS-AMI substudy. Eur Heart J. 2014;35:1533–40.

    Article  CAS  PubMed  Google Scholar 

  41. Kim JH, Lee JH, Jang SY, et al. Prognostic value of early acute kidney injury after primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction. Am J Cardiol. 2014;114:1174–8.

    Article  PubMed  Google Scholar 

  42. Menzorov MV, Shutov AM, Serov VA, Mikhaĭlova EV. Acute kidney injury in patients with myocardial infarction and efficacy of thrombolytic therapy. Kardiologiia. 2012;52:8–12.

    CAS  PubMed  Google Scholar 

  43. Liao Y, Dong X, Chen K, Fang Y, Li W, Huang G. Renal function, acute kidney injury and hospital mortality in patients with acute myocardial infarction. J Int Med Res. 2014;42:1168–77.

    Article  PubMed  Google Scholar 

  44. Liu KL, Lee KT, Chang CH, Chen YC, Lin SM, Chu PH. Elevated plasma thrombomodulin and angiopoietin-2 predict the development of acute kidney injury in patients with acute myocardial infarction. Crit Care. 2014;18:R100.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu YH, Liu Y, Tan N, et al. Predictive value of GRACE risk scores for contrast-induced acute kidney injury in patients with ST-segment elevation myocardial infarction before undergoing primary percutaneous coronary intervention. Int Urol Nephrol. 2014;46:417–26.

    Article  PubMed  Google Scholar 

  46. Moriyama N, Ishihara M, Noguchi T, et al. Admission hyperglycemia is an independent predictor of acute kidney injury in patients with acute myocardial infarction. Circ J. 2014;78:1475–80.

    Article  CAS  PubMed  Google Scholar 

  47. Mizuno A, Ohde S, Nishizaki Y, Komatsu Y, Niwa K. Additional value of the red blood cell distribution width to the Mehran risk score for predicting contrast-induced acute kidney injury in patients with ST-elevation acute myocardial infarction. J Cardiol. 2015;66:41–5.

    Article  PubMed  Google Scholar 

  48. Hsieh MJ, Chen YC, Chen CC, Wang CL, Wu LS, Wang CC. Renal dysfunction on admission, worsening renal function, and severity of acute kidney injury predict 2-year mortality in patients with acute myocardial infarction. Circ J. 2013;77:217–23.

    Article  PubMed  Google Scholar 

  49. dos Santos LN, Conejo F, Filho FHF, et al. Impact of acute renal failure on in-hospital outcomes following percutaneous treatment of acute myocardial infarction. Rev Bras Cardiol Invasiva. 2013;21:344–50.

    Article  Google Scholar 

  50. Choi JS, Kim YA, Kim MJ, et al. Relation between transient or persistent acute kidney injury and long-term mortality in patients with myocardial infarction. Am J Cardiol. 2013;112:41–5.

    Article  PubMed  Google Scholar 

  51. Marenzi G, Cabiati A, Bertoli SV, et al. Incidence and relevance of acute kidney injury in patients hospitalized with acute coronary syndromes. Am J Cardiol. 2013;111:816–22.

    Article  PubMed  Google Scholar 

  52. Kume K, Yasuoka Y, Adachi H, et al. Impact of contrast-induced acute kidney injury on outcomes in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Cardiovasc Revasc Med. 2013;14:253–7.

    Article  PubMed  Google Scholar 

  53. Rodrigues FB, Bruetto RG, Torres US, Otaviano AP, Zanetta DMT, Burdmann EA. Incidence and mortality of acute kidney injury after myocardial infarction: a comparison between KDIGO and RIFLE criteria. PLoS One. 2013;8:e69998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Andò G, Morabito G, de Gregorio C, Trio O, Saporito F, Oreto G. Age, glomerular filtration rate, ejection fraction, and the AGEF score predict contrast-induced nephropathy in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Catheter Cardiovasc Interv. 2013;82:878–85.

    Article  PubMed  Google Scholar 

  55. Pyxaras SA, Sinagra G, Mangiacapra F, et al. Contrast-induced nephropathy in patients undergoing primary percutaneous coronary intervention without acute left ventricular ejection fraction impairment. Am J Cardiol. 2013;111:684–8.

    Article  PubMed  Google Scholar 

  56. Lazaros G, Tsiachris D, Tousoulis D, et al. In-hospital worsening renal function is an independent predictor of one-year mortality in patients with acute myocardial infarction. Int J Cardiol. 2012;155:97–101.

    Article  PubMed  Google Scholar 

  57. Lazzeri C, Valente S, Chiostri M, Picariello C, Attanà P, Gensini GF. ST-elevation myocardial infarction with preserved ejection fraction: the impact of worsening renal failure. Int J Cardiol. 2012;155:170–2.

    Article  PubMed  Google Scholar 

  58. Queiroz REB, de Oliveira LSN, de Albuquerque CA, et al. Acute kidney injury risk in patients with ST-segment elevation myocardial infarction at presentation to the ED. Am J Emerg Med. 2012;30:1921–7.

    Article  PubMed  Google Scholar 

  59. Fox CS, Muntner P, Chen AY, Alexander KP, Roe MT, Wiviott SD. Short-term outcomes of acute myocardial infarction in patients with acute kidney injury: a report from the National Cardiovascular Data Registry. Circulation. 2012;125:497–504.

    Article  PubMed  Google Scholar 

  60. Bruetto RG, Rodrigues FB, Torres US, Otaviano AP, Zanetta DMT, Burdmann EA. Renal function at hospital admission and mortality due to acute kidney injury after myocardial infarction. PLoS One. 2012;7:e35496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hwang SH, Jeong MH, Ahmed K, et al. Different clinical outcomes of acute kidney injury according to acute kidney injury network criteria in patients between ST elevation and non-ST elevation myocardial infarction. Int J Cardiol. 2011;150:99–101.

    Article  PubMed  Google Scholar 

  62. Lim DH, Jeong JH, Jeong JM, et al. One-year mortality of acute kidney injury in patients with acute myocardial infarction. Korean J Nephrol. 2011;30:141–7.

    CAS  Google Scholar 

  63. Wi J, Ko YG, Kim JS, et al. Impact of contrast-induced acute kidney injury with transient or persistent renal dysfunction on long-term outcomes of patients with acute myocardial infarction undergoing percutaneous coronary intervention. Heart. 2011;97:1753–7.

    Article  PubMed  Google Scholar 

  64. Kim MJ, Choi HS, Oh SH, et al. Impact of acute kidney injury on clinical outcomes after ST elevation acute myocardial infarction. Yonsei Med J. 2011;52:603–9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Amin AP, Spertus JA, Reid KJ, et al. The prognostic importance of worsening renal function during an acute myocardial infarction on long-term mortality. Am Heart J. 2010;160:1065–71.

    Article  PubMed  Google Scholar 

  66. Senoo T, Motohiro M, Kamihata H, et al. Contrast-induced nephropathy in patients undergoing emergency percutaneous coronary intervention for acute coronary syndrome. Am J Cardiol. 2010;105:624–8.

    Article  PubMed  Google Scholar 

  67. Anzai A, Anzai T, Naito K, et al. Prognostic significance of acute kidney injury after reperfused ST-elevation myocardial infarction: synergistic acceleration of renal dysfunction and left ventricular remodeling. J Card Fail. 2010;16:381–9.

    Article  PubMed  Google Scholar 

  68. Goldberg, Kogan E, Hammerman H, Markiewicz W, Aronson D. The impact of transient and persistent acute kidney injury on long-term outcomes after acute myocardial infarction. Kidney Int. 2009;76:900–6.

    Article  PubMed  Google Scholar 

  69. Parikh CR, Coca SG, Wang Y, Masoudi FA, Krumholz HM. Long-term prognosis of acute kidney injury after acute myocardial infarction. Arch Intern Med. 2008;168:987–95.

    Article  PubMed  Google Scholar 

  70. Passos RL, Siqueira DAA, Silva JFA, et al. Acute renal failure after primary percutaneous coronary intervention in acute myocardial infarction: predictors and long-term clinical evolution. Rev Bras Cardiol Invasiva. 2008;16:422–8.

    Article  Google Scholar 

  71. Bouzas-Mosquera A, Vázquez-Rodríguez JM, Calviño-Santos R, et al. Contrast-induced nephropathy and acute renal failure following emergent cardiac catheterization: incidence, risk factors and prognosis. Rev Esp Cardiol. 2007;60:1026–34.

    Article  PubMed  Google Scholar 

  72. Latchamsetty R, Fang J, Kline-Rogers E, et al. Prognostic value of transient and sustained increase in in-hospital creatinine on outcomes of patients admitted with acute coronary syndrome. Am J Cardiol. 2007;99:939–42.

    Article  CAS  PubMed  Google Scholar 

  73. Buargub M, Elmokhtar ZO. Incidence and mortality of acute kidney injury in patients with acute coronary syndrome: a retrospective study from a single coronary care unit. Saudi J Kidney Dis Transpl. 2016;27:752–7.

    Article  PubMed  Google Scholar 

  74. Hsiao PG, Hsieh CA, Yeh CF, et al. Early prediction of acute kidney injury in patients with acute myocardial injury. J Crit Care. 2012;27:525.e1-7.

    Article  PubMed  Google Scholar 

  75. Marenzi G, Assanelli E, Campodonico J, et al. Acute kidney injury in ST-segment elevation acute myocardial infarction complicated by cardiogenic shock at admission. Crit Care Med. 2010;38:438–44.

    Article  PubMed  Google Scholar 

  76. Shacham Y, Leshem-Rubinow E, Ziv-Baran T, et al. Incidence and mortality of acute kidney injury in acute myocardial infarction patients: a comparison between AKIN and RIFLE criteria. Int Urol Nephrol. 2014;46:2371–7.

    Article  CAS  PubMed  Google Scholar 

  77. Pickering JW, Blunt IR, Than MP. Acute Kidney Injury and mortality prognosis in Acute Coronary Syndrome patients: A meta-analysis. Nephrology (Carlton) 2016. Epub ahead of print.

  78. Amin AP, Salisbury AC, McCullough PA, et al. Trends in the incidence of acute kidney injury in patients hospitalized with acute myocardial infarction. Arch Intern Med. 2012;172:246–53.

    Article  CAS  PubMed  Google Scholar 

  79. Steinvil A, Garcia HG, Rogers T, et al. Acute kidney injury following primary percutaneous coronary interventions for ST-segment elevation myocardial infarction: trends in the past fifteen years. J Am Coll Cardiol. 2016;67:79.

    Article  Google Scholar 

  80. Nie S, Tang L, Zhang W, Feng Z, Chen X. Are there modifiable risk factors to improve AKI? Biomed Res Int. 2017;2017:5605634.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Andreucci M, Faga T, Serra R, De Sarro G, Michael A. Update on the renal toxicity of iodinated contrast drugs used in clinical medicine. Drug Healthc Patient Saf. 2017;9:25–37.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Shacham Y, Steinvil A, Arbel Y. Acute kidney injury among ST elevation myocardial infarction patients treated by primary percutaneous coronary intervention: a multifactorial entity. J Nephrol. 2016;29:169–74.

    Article  PubMed  Google Scholar 

  83. Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J. 2016;37:2999–3058.

    Article  PubMed  Google Scholar 

  84. Roffi M, Patrono C, Collet JP, et al. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the management of acute coronary syndromes in patients presenting without persistent st-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:267–315.

    Article  CAS  PubMed  Google Scholar 

  85. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2017. 8pp. Epub ahead of print.

  86. Schweiger MJ, Chambers CE, Davidson CJ, et al. Prevention of contrast induced nephropathy recommendations for the high risk patient undergoing cardiovascular procedures. Catheter Cardiovasc Interv. 2007;69:135–40.

    Article  PubMed  Google Scholar 

  87. Windecker S, Kolh P, Alfonso F, et al. 2014 ESC/EACTS guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35:2541–619.

    Article  PubMed  Google Scholar 

  88. Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Catheter Cardiovasc Interv. 2012;79:453–95.

    Article  PubMed  Google Scholar 

  89. Thomas M, Davies A, Dawnay A, et al. National Institute of Clinical Excellence (NICE) Acute kidney injury: prevention, detection and management clinical guideline. August 2013 nice.org.uk/guidance/cg169.

  90. Maioli M, Toso A, Leoncini M, Micheletti C, Bellandi F. Effects of hydration in contrast-induced acute kidney injury after primary angioplasty a randomized. Controlled Trial Circ Cardiovasc Interv. 2011;4:456–62.

    Article  PubMed  Google Scholar 

  91. Jurado-Román A, Hernández-Hernández F, García-Tejada J, et al. Role of hydration in contrast-induced nephropathy in patients who underwent primary percutaneous coronary intervention. Am J Cardiol. 2015;115:1174–8.

    Article  PubMed  Google Scholar 

  92. Marenzi G, Ferrari C, Marana I, et al. Prevention of contrast nephropathy by furosemide with matched hydration: the MYTHOS (Induced Diuresis With Matched Hydration Compared to Standard Hydration for Contrast Induced Nephropathy Prevention) trial. JACC Cardiovasc Interv. 2012;5:90–7.

    Article  PubMed  Google Scholar 

  93. Brar SS, Aharonian V, Mansukhani P, et al. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial. Lancet. 2014;383:1814–23.

    Article  PubMed  Google Scholar 

  94. Meier P, Ko DT, Tamura A, Tamhane U, Gurm HS. Sodium bicarbonate-based hydration prevents contrast-induced nephropathy: a meta-analysis. BMC Med. 2009;7:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Hoste EAJ, De Waele JJ, Gevaert SA, Uchino S, Kellum JA. Sodium bicarbonate for prevention of contrast-induced acute kidney injury: a systematic review and meta-analysis. Nephrol Dial Transpl. 2010;25:747–58.

    Article  CAS  Google Scholar 

  96. Marenzi G, Assanelli E, Marana I, et al. N-acetylcysteine and contrast-induced nephropathy in primary angioplasty. N Engl J Med. 2006;354:2773–82.

    Article  CAS  PubMed  Google Scholar 

  97. Aslanger E, Uslu B, Akdeniz C, Polat N, Cizgici Y, Oflaz H. Intrarenal application of N-acetylcysteine for the prevention of contrast medium-induced nephropathy in primary angioplasty. Coron Artery Dis. 2012;23:265–70.

    Article  PubMed  Google Scholar 

  98. Tanaka A, Suzuki Y, Suzuki N, et al. Does N-acetylcysteine reduce the incidence of contrast-induced nephropathy and clinical events in patients undergoing primary angioplasty for acute myocardial infarction? Intern Med Tokyo Jpn. 2011;50:673–7.

    Article  CAS  Google Scholar 

  99. Thiele H, Hildebrand L, Schirdewahn C, et al. Impact of high-dose N-acetylcysteine versus placebo on contrast-induced nephropathy and myocardial reperfusion injury in unselected patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: the LIPSIA-N-ACC (Prospective, Single-Blind, Placebo-Controlled, Randomized Leipzig Immediate Percutaneous Coronary Intervention Acute Myocardial Infarction N-ACC) Trial. J Am Coll Cardiol. 2010;55:2201–9.

    Article  CAS  PubMed  Google Scholar 

  100. Jaffery Z, Verma A, White CJ, et al. A randomized trial of intravenous n-acetylcysteine to prevent contrast induced nephropathy in acute coronary syndromes. Catheter Cardiovasc Interv. 2012;79:921–6.

    Article  PubMed  Google Scholar 

  101. Yoshida T, Hayashi M. Pleiotropic effects of statins on acute kidney injury: involvement of Krüppel-like factor 4. Clin Exp Nephrol. 2017;21:175–81.

    Article  CAS  PubMed  Google Scholar 

  102. Lee JM, Park J, Jeon KH, et al. Efficacy of short-term high-dose statin pretreatment in prevention of contrast-induced acute kidney injury: updated study-level meta-analysis of 13 randomized controlled trials. PLoS One. 2014;9:e111397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Xie H, Ye Y, Shan G, et al. Effect of statins in preventing contrast-induced nephropathy: an updated meta-analysis. Coron Artery Dis. 2014;25:565–74.

    Article  PubMed  Google Scholar 

  104. Li H, Wang C, Liu C, Li R, Zou M, Cheng G. Efficacy of short-term statin treatment for the prevention of contrast-induced acute kidney injury in patients undergoing coronary angiography/percutaneous coronary intervention: a meta-analysis of 21 randomized controlled trials. Am J Cardiovasc Drugs Drugs Devices Interv. 2016;16:201–19.

    Article  CAS  Google Scholar 

  105. Mager A, Vaknin Assa H, Lev EI, Bental T, Assali A, Kornowski R. The ratio of contrast volume to glomerular filtration rate predicts outcomes after percutaneous coronary intervention for ST-segment elevation acute myocardial infarction. Catheter Cardiovasc Interv. 2011;78:198–201.

    Article  PubMed  Google Scholar 

  106. Andò G, de Gregorio C, Morabito G, Trio O, Saporito F, Oreto G. Renal function-adjusted contrast volume redefines the baseline estimation of contrast-induced acute kidney injury risk in patients undergoing primary percutaneous coronary intervention. Circ Cardiovasc Interv. 2014;7:465–72.

    Article  PubMed  CAS  Google Scholar 

  107. Celik O, Ozturk D, Akin F, et al. Association between contrast media volume-glomerular filtration rate ratio and contrast-induced acute kidney injury after primary percutaneous coronary intervention. Angiology. 2015;66:519–24.

    Article  PubMed  Google Scholar 

  108. Gurm HS, Dixon SR, Smith DE, et al. Renal function-based contrast dosing to define safe limits of radiographic contrast media in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol. 2011;58:907–14.

    Article  PubMed  Google Scholar 

  109. Freeman RV, O’Donnell M, Share D, et al. Nephropathy requiring dialysis after percutaneous coronary intervention and the critical role of an adjusted contrast dose. Am J Cardiol. 2002;90:1068–73.

    Article  PubMed  Google Scholar 

  110. Brown JR, Robb JF, Block CA, et al. Does safe dosing of iodinated contrast prevent contrast-induced acute kidney injury? Circ Cardiovasc Interv. 2010;3:346–50.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bolognese L, Falsini G, Schwenke C, et al. Impact of iso-osmolar versus low-osmolar contrast agents on contrast-induced nephropathy and tissue reperfusion in unselected patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention (From the Contrast Media and Nephrotoxicity Following Primary Angioplasty for Acute Myocardial Infarction [CONTRAST-AMI] Trial). Am J Cardiol. 2012;109:67–74.

    Article  CAS  PubMed  Google Scholar 

  112. Gül M, Turan B, Uğur M, et al. Nephrotoxicity of iodixanol versus iopamidol in patients with acute coronary syndrome. Turk Kardiyol Dern Ars. 2013;41:21–7.

    Article  PubMed  Google Scholar 

  113. Andò G, Capodanno D. Radial versus femoral access in invasively managed patients with acute coronary syndrome: a systematic review and meta-analysis. Ann Intern Med. 2015;163:932–40.

    Article  PubMed  Google Scholar 

  114. Ohno Y, Maekawa Y, Miyata H, et al. Impact of periprocedural bleeding on incidence of contrast-induced acute kidney injury in patients treated with percutaneous coronary intervention. J Am Coll Cardiol. 2013;62:1260–6.

    Article  PubMed  Google Scholar 

  115. Andò G, Costa F, Trio O, Oreto G, Valgimigli M. Impact of vascular access on acute kidney injury after percutaneous coronary intervention. Cardiovasc Revasc Med. 2016;17:333–8.

    Article  PubMed  Google Scholar 

  116. Trio O, Vizzari G, Piccione MC. Is STEMI presentation the link between vascular access and acute kidney injury after percutaneous coronary intervention? Int J Cardiol. 2016;223:83–5.

    Article  PubMed  Google Scholar 

  117. Pancholy MS, Skelding K, Scott T, Blankenship J, Pancholy SB. Effect of access site choice on acute kidney injury after percutaneous coronary intervention. Am J Cardiol. 2017;120(12):2141–5.

    Article  PubMed  Google Scholar 

  118. Shacham Y, Leshem-Rubinow E, Gal-Oz A, Arbel Y, Keren G, Roth A, et al. Relation of time to coronary reperfusion and the development of acute kidney injury after ST-segment elevation myocardial infarction. Am J Cardiol. 2014;114:1131–5.

    Article  PubMed  Google Scholar 

  119. Lim SY, Hausenloy DJ. Remote ischemic conditioning: from bench to bedside. Front Physiol. 2012;3:27.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Bei W, Duan C, Chen J, et al. Remote ischemic conditioning for preventing contrast-induced acute kidney injury in patients undergoing percutaneous coronary interventions/coronary angiography: a meta-analysis of randomized controlled trials. J Cardiovasc Pharmacol Ther. 2016;21:53–63.

    Article  CAS  PubMed  Google Scholar 

  121. Zeller M, Labalette-Bart M, Juliard J-M, Potier L, Feldman LJ, Steg PG, et al. Metformin and contrast-induced acute kidney injury in diabetic patients treated with primary percutaneous coronary intervention for ST segment elevation myocardial infarction: a multicenter study. Int J Cardiol. 2016;220:137–42.

    Article  PubMed  Google Scholar 

  122. Posma RA, Lexis CP, Lipsic E, et al. Effect of metformin on renal function after primary percutaneous coronary intervention in patients without diabetes presenting with ST-elevation myocardial infarction: data from the GIPS-III trial. Cardiovasc Drugs Ther. 2015;29:451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang J, Fu X, Jia X, et al. B-type natriuretic peptide for prevention of contrast-induced nephropathy in patients with heart failure undergoing primary percutaneous coronary intervention. Acta Radiol Stockh Swed 1987. 2010;51:641–8.

    Google Scholar 

  124. Firouzi A, Maadani M, Kiani R, et al. Intravenous magnesium sulfate: new method in prevention of contrast-induced nephropathy in primary percutaneous coronary intervention. Int Urol Nephrol. 2015;47:521–5.

    Article  CAS  PubMed  Google Scholar 

  125. Prasad A, Sohn A, Morales J, et al. Contemporary practice patterns related to the risk of acute kidney injury in the catheterization laboratory: results from a survey of Society of Cardiovascular Angiography and Intervention (SCAI) cardiologists. Catheter Cardiovasc Interv. 2017;89:383–92.

    Article  PubMed  Google Scholar 

  126. Basile DP, Donohoe D, Roethe K, Osborn JL. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol. 2001;281:F887–99.

    Article  CAS  PubMed  Google Scholar 

  127. Spurgeon-Pechman KR, Donohoe DL, Mattson DL, Lund H, James L, Basile DP. Recovery from acute renal failure predisposes hypertension and secondary renal disease in response to elevated sodium. Am J Physiol Ren Physiol. 2007;293:F269–78.

    Article  CAS  Google Scholar 

  128. Best PJ, Lennon R, Ting HH, et al. The impact of renal insufficiency on clinical outcomes in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol. 2002;39:1113–9.

    Article  PubMed  Google Scholar 

  129. Davenport MS, Khalatbari S, Dillman JR, Cohan RH, Caoili EM, Ellis JH. Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material. Radiology. 2013;267:94–105.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zambetti BR, Thomas F, Hwang I, et al. A web-based tool to predict acute kidney injury in patients with ST-elevation myocardial infarction: development, internal validation and comparison. PLoS One. 2017;12:e0181658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Chatterjee S, Kundu A, Mukherjee D, et al. Risk of contrast-induced acute kidney injury in ST-elevation myocardial infarction patients undergoing multi-vessel intervention-meta-analysis of randomized trials and risk prediction modeling study using observational data. Catheter Cardiovasc Interv. 2017;90:205–12.

    Article  PubMed  Google Scholar 

  132. Abusaada K, Yuan C, Sabzwari R, Butt K, Maqsood A. Development of a novel score to predict the risk of acute kidney injury in patient with acute myocardial infarction. J Nephrol. 2017;30:419–25.

    Article  PubMed  Google Scholar 

  133. Zhang B, Liang L, Chen W, Liang C, Zhang S. The efficacy of sodium bicarbonate in preventing contrast-induced nephropathy in patients with pre-existing renal insufficiency: a meta-analysis. BMJ Open. 2015;5:e006989.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Dong Y, Zhang B, Liang L, et al. How strong is the evidence for sodium bicarbonate to prevent contrast-induced acute kidney injury after coronary angiography and percutaneous coronary intervention? Medicine (Baltimore). 2016;95:e2715.

    Article  CAS  Google Scholar 

  135. Vanmassenhove J, Kielstein J, Jörres A, Biesen WV. Management of patients at risk of acute kidney injury. Lancet. 2017;389:2139–51.

    Article  PubMed  Google Scholar 

  136. Silver SA, Siew ED. Follow-up care in acute kidney injury: lost in transition. Adv Chronic Kidney Dis. 2017;24:246–52.

    Article  PubMed  Google Scholar 

  137. Sawhney S, Mitchell M, Marks A, Fluck N, Black C. Long-term prognosis after acute kidney injury (AKI): what is the role of baseline kidney function and recovery? A systematic review BMJ Open. 2015;5:e006497.

    Article  PubMed  Google Scholar 

  138. Doyle JF, Forni LG. Acute kidney injury: short-term and long-term effects. Crit Care. 2016;20:188.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Nijssen EC, Rennenberg RJ, Nelemans PJ, et al. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet. 2017;389:1312–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Tziakas.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaltsas, E., Chalikias, G. & Tziakas, D. The Incidence and the Prognostic Impact of Acute Kidney Injury in Acute Myocardial Infarction Patients: Current Preventive Strategies. Cardiovasc Drugs Ther 32, 81–98 (2018). https://doi.org/10.1007/s10557-017-6766-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-017-6766-6

Keywords

Navigation