Skip to main content
Log in

Azilsartan Decreases Renal and Cardiovascular Injury in the Spontaneously Hypertensive Obese Rat

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Angiotensin II type 1 receptor blockers (ARBs) are widely used in treating hypertension. In the present study, we tested the hypothesis that a novel ARB, azilsartan medoxomil (AZL-M) will prevent renal and cardiovascular injury in the spontaneously hypertensive obese rat (SHROB), a model of cardiometabolic syndrome.

Methods

Male SHROB were treated with vehicle or AZL-M orally for 56 days. Vehicle treated normotensive Wistar-Kyoto (WKY) rats served as controls. The effects of AZL-M on kidney injury, vascular endothelial and heart functions, lipid profile, and glucose tolerance were assessed.

Results

AZL-M demonstrated anti-hypertensive effects along with markedly improved vascular endothelial function in SHROB. In these rats, AZL-M demonstrates strong kidney protective effects with lower albuminuria and nephrinuria along with reduced tubular cast formation and glomerular injury. AZL-M treatment also improved left ventricular heart function, attenuated development of left ventricular hypertrophy, and reduced cardiac fibrosis in SHROB.

Conclusion

Overall, these findings demonstrate kidney and heart protective effects of AZL-M in SHROB, and these effects were associated with its ability to lower blood pressure and improve endothelial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin system. Physiol Rev. 2008;86:747–803.

    Article  Google Scholar 

  2. Iwanami J, Mogi M, Iwai M, Horiuchi M. Inhibition of renin-angiotensin system and target organ protection. Hypertens Res. 2009;32:229–37.

    Article  CAS  PubMed  Google Scholar 

  3. Cole BK, Keller SR, Wu R, Carter JD, Nadler JL, Numemaker CS. Valsartan protects pancreatic islets and adipose tissue from the inflammatory and metabolic consequences of a high-fat diet in mice. Hypertens. 2010;55:715–21.

    Article  CAS  Google Scholar 

  4. Sofue T, Kiyomoto H. Angiotensin II receptor blocker is a renoprotective remedy for metabolic syndrome. Hypertens Res. 2009;32:735–7.

    Article  PubMed  Google Scholar 

  5. Elmarakby AA, Imig JD. Obesity is the major contributor to vascular dysfunction and inflammation in high-fat diet hypertensive rats. Clin Sci Lond. 2010;118:291–301.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Weir MR. The renoprotective effects of RAS inhibition: focus on prevention and treatment of chronic kidney disease. Postgrad Med. 2009;121:96–103.

    Article  PubMed  Google Scholar 

  7. Wassmann S, Laufs U, Bäumer AT, Müller K, Ahlbory K, Linz W, et al. MHG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertens. 2001;37:1450–7.

    Article  CAS  Google Scholar 

  8. Vieira Jr JM, Rodrigues LT, Mantovani E, Dellê H, Mattar AL, Malheiros DM, et al. Statin monotherapy attenuates renal injury in a salt-sensitive hypertension model of renal disease. Nephron Physiol. 2005;101:82–91.

    Article  Google Scholar 

  9. Baker WL, White WB. Azilsartan medoxomil: a new angiotensin II receptor antagonist for treatment of hypertension. Ann Pharmacother. 2011;45:1506–15.

    Article  CAS  PubMed  Google Scholar 

  10. Vople M, Savoia C. New treatment options in the management of hypertension: appraising the potential role of azilsartan medoxomil. Integr Blood Press Control. 2012;5:19–25.

    Google Scholar 

  11. Kohara Y, Kubo K, Imamiya E, Wada T, Inada Y, Naka T. Synthesis and angiotensin II receptor antagonist activities of benzimidazole derivatives bearing acidic heterocycles as novel tetrazolebioisosteres. J Med Chem. 1996;39:5228–35.

    Article  CAS  PubMed  Google Scholar 

  12. Ojima M, Igata H, Tanaka M, Sakamoto H, Kuroita T, Kohara Y, et al. In vitro antagonistic properties of a new angiotensin type 1 receptor blocker, azilsartan, in receptor binding and function studies. J Pharmacol Exp Ther. 2011;336:801–8.

    Article  CAS  PubMed  Google Scholar 

  13. Kajiya T, Ho C, Wang J, Vilardi R, Kurtz TW. Molecular and cellular effects of azilsartan: a new generation angiotensin II receptor blocker. J Hypertens. 2011;29:2476–83.

    Article  CAS  PubMed  Google Scholar 

  14. Ye Y, Keyes KT, Zhang CF, Perez-Polo JR, Lin Y, Birnbaum Y. Additive effect of TAK-491, a new angiotensin receptor blocker and pioglitazone, in reducing myocardial infarct size. Cardiovasc Drugs Ther. 2010;24:107–20.

    Article  CAS  PubMed  Google Scholar 

  15. Baumann PQ, Zaman T, McElroy-Yaggy K, Sobel BE. The efficacy and tolerability of azilsartan in mice with left ventricular pressure overload or acute myocardial infarction. J Cardiovasc Pharmacol. 2013;61:437–43.

    Article  Google Scholar 

  16. Kusumoto K, Igata H, Ojima M, Tsuboi A, Imanishi M, Yamaguchi F, et al. Antihypertensive, insulin-sensitising and renoprotective effects of a novel, potent and long-acting angiotensin II type 1 receptor blocker, azilsartan medoxomil, in rat and dog models. Eur J Pharmacol. 2011;669:84–93.

    Article  CAS  PubMed  Google Scholar 

  17. Koletsky. Pathologic findings and laboratory data in a new strain of obese hypertensive rats. Am J Pathol. 1975;80:129–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Ernsberger P, Johnson JL, Rosenthal T, Mirelman D, Koletsky RJ. Therapeutic actions of allylmercaptocaptopril and captopril in a rat model of metabolic syndrome. Am J Hypertens. 2007;20:866–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ernsberger P, Koletsky RJ, Friedman JE. Molecular pathology in the obese spontaneous hypertensive Koletsky rat: a model of syndrome X. Ann N Y Acad Sci. 1999;892:272–88.

    Article  CAS  PubMed  Google Scholar 

  20. Imig JD, Walsh KA, Hye Khan MA, Nagasawa T, Cherian-Shaw M, Shaw SM, et al. Soluble epoxide hydrolase inhibition and peroxisome proliferator activated receptor γ agonist improve vascular function and decrease renal injury in hypertensive obese rats. Exp Biol Med. 2012;237:1402–12.

    Article  CAS  Google Scholar 

  21. Purves RD. Optimum numerical integration methods for estimation of area-under-the-curve (AUC) and area-under-the-moment-curve (AUMC). J Pharmacokinet Biopharm. 1992;20:211–26.

    Article  CAS  PubMed  Google Scholar 

  22. Scheen AJ. Management of the metabolic syndrome. Minerva Endocrinol. 2004;29:31–45.

    CAS  PubMed  Google Scholar 

  23. White WB, Weber MA, Sica D, Bakris GL, Perez A, Cao C, et al. Effects of the angiotensin receptor blocker azilsartan medoxomil versus olmesartan and valsartan on ambulatory and clinic blood pressure in patients with stages 1 and 2 hypertension. Hypertens. 2011;57:413–20.

    Article  CAS  Google Scholar 

  24. Bakris GL, Sica D, Weber M, White WB, Roberts A, Perez A, et al. The comparative effect of azilsartan medoxomil and olmesartan on ambulatory and clinic blood pressure. J Clin Hypertens Greenwich. 2011;13:81–8.

    Article  CAS  PubMed  Google Scholar 

  25. Sueta D, Kataoka K, Koibuchi N, Toyama K, Uekawa K, Katayama T, et al. Novel mechanism for disrupted circadial blood pressure rhythm in a rat model of metabolic syndrome-the critical role of angiotensin II. J Am Heart Assoc. 2013;2:e000035.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kurtz TW, Kajiya T. Differential pharmacology and benefit/risk of azilsartan compared to other sartans. Vasc Health Risk Manag. 2012;8:133–43.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Galili O, Versari D, Sattler KJ, Olson ML, Mannheim D, McConnell JP, et al. Early experimental obesity is associated with coronary endothelial dysfunction and oxidative stress. Am J Physiol Heart Circ Physiol. 2007;292:H904–11.

    Article  CAS  PubMed  Google Scholar 

  28. Knight SF, Imig JD. Obesity, insulin resistance, and renal function. Microcirc. 2007;14:349–62.

    Article  CAS  Google Scholar 

  29. Picchhi A, Gao X, Belmandani S, Potter BJ, Focardi M, Chilian WM, et al. Tumor necrosis factor-α induces endothelial dysfunction in the prediabetic metabolic syndrome. Circ Res. 2006;99:69–77.

    Article  Google Scholar 

  30. Tziomalos K, Athyros VG, Karagiannis A, Mikhailidis DP. Endothelial dysfunction in metabolic syndrome: prevalence, pathogenesis and management. Nutr Metab Cardiovasc Dis. 2010;20:140–6.

    Article  CAS  PubMed  Google Scholar 

  31. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circ. 2005;112:2735–52.

    Article  Google Scholar 

  32. Negro R. Endothelial effects of antihypertensive treatment: focus on irbesartan. Vasc Health Risk Manag. 2008;4:89–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Russell JC, Kelly SE, Vine DF, Proctor SD. Irbesartan-mediated reduction of renal and cardiac damage in insulin resistant JCR:LA-cp rats. Br J Pharmacol. 2009;158:1588–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Lee MH, Song HK, Ko GJ, Kang YS, Han SY, Han KH, et al. Angiotensin receptor blockers improve insulin resistance in type 2 diabetic rats by modulating adipose tissue. Kidney Int. 2008;74:890–900.

    Article  CAS  PubMed  Google Scholar 

  35. Rong X, Li Y, Ebihara K, Zhao M, Kusakabe T, Tomita T, et al. Irbesartan treatment up-regulates hepatic expression of PPARα and its target genes in obese Koletsky (fak/fak) rats: a link to amelioration of hypertrigyceridaemia. Br J Pharmacol. 2010;160:1796–807.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Fruchart JC. Peroxisome proliferator-activated receptor-alpha (PPARalpha): at the crossroads of obesity, diabetes and cardiovascular disease. Atheroscler. 2009;205:1–8.

    Article  CAS  Google Scholar 

  37. Ecelbarger CM, Rash A, Sinha RK, Tiwari S. The effect of chronic candesartan therapy on the metabolic profile and renal tissue cytokine levels in the obese Zucker rat. Mediat Inflamm. 2010;2010:841343.

    Article  Google Scholar 

  38. Zhao M, Li Y, Wang J, Ebihara K, Rong X, Hosoda K, et al. Azilsartan treatment improves insulin sensitivity in obese spontaneously hypertensive Koletsky rats. Diabetes Obes Metab. 2011;13:1123–9.

    Article  CAS  PubMed  Google Scholar 

  39. Lea J, Cheek D, Thornley-Brown D, Appel L, Agodoa L, Contreras G, et al. AASK Study Investigators. Metabolic syndrome, proteinuria, and the risk of progressive CKD in hypertensive African Americans. Am J Kidney Dis. 2008;51:732–40.

    Article  CAS  PubMed  Google Scholar 

  40. Pugsley MK. The angiotensin-II (AT-II) receptor blocker olmesartan reduces renal damage in animal models of hypertension and diabetes. Proc West Pharmacol Soc. 2005;48:35–8.

    CAS  PubMed  Google Scholar 

  41. Khan MAH, Imig JD. Telmisartan provides better renal protection than valsartan in a rat model of metabolic syndrome. Am J Hypertens. 2011;24:816–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Mizuno M, Sada T, Kato M, Koike H. Renoprotective effect of blockade of angiotensin II AT1 receptors in an animal model of type 2 diabetes. Hypertens Res. 2002;25:271–8.

    Article  CAS  PubMed  Google Scholar 

  43. Ishimitsu T, Honda T, Ohno E, Furukata S, Sudo Y, Nakano N, et al. Year-long antihypertensive therapy with candesartan completely prevents development of cardiovascular injuries in spontaneously hypertensive rats. Int Heart J. 2010;51:359–64.

    Article  PubMed  Google Scholar 

  44. Nakamura Y, Suzuki S, Saitoh S, Takeishi Y. New angiotensin II type 1 receptor blocker, azilsartan, attenuates cardiac remodeling after myocardial infarction. Biol Pharm Bull. 2013;36:1326–31.

    Article  CAS  PubMed  Google Scholar 

  45. Varagic J, Frohlich ED, Susic D, Ahn J, Matavelli L, López B, et al. AT1 receptor antagonism attenuates target organ effects of salt excess in SHRs without affecting pressure. Am J Physiol Heart Circ Physiol. 2008;294:H853–8.

    Article  CAS  PubMed  Google Scholar 

  46. Susic D, Fares H, Frohlich ED. Telmisartan prevents excess-salt-induced exacerbated (malignant) hypertension in spontaneous hypertensive rats. J Cardiovasc Pharmacol Ther. 2013;18:126–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Katherine A. Walsh and Priyanka Nervatla from Department of Pharmacology & Toxicology, Medical College of Wisconsin for their excellent technical assistance. We also thank Dr Frantisek Papousek from Institute of Physiology, Academy of Science of the Czech Republic for his valuable comments in interpreting echocardiographic data. These studies were supported by a grant from Takeda Pharmaceuticals Inc., USA. Jan Neckář is supported by Czech Science Foundation grant (13-10267S). Md. Abdul Hye Khan is supported by a Postdoctoral Fellowship from the Midwest Affiliate of the American Heart Association.

Disclosure

No conflicts of interest, financial or otherwise, are declared by the author(s).

Author’s contribution

Md. Abdul Hye Khan designed the study, performed experiments, analyzed data and wrote the manuscript. Jan Neckář designed the study, performed experiments, analyzed data and wrote the manuscript. John D. Imig designed the study and wrote the manuscript. Breana Cummens and Geneva M. Wahl performed experiments, analyzed the data. All authors have thoroughly read the manuscript, agreed on the data interpretation, and approved the final draft submitted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Imig.

Additional information

Md. Abdul Hye Khan and Jan Neckář contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A.H., Neckář, J., Cummens, B. et al. Azilsartan Decreases Renal and Cardiovascular Injury in the Spontaneously Hypertensive Obese Rat. Cardiovasc Drugs Ther 28, 313–322 (2014). https://doi.org/10.1007/s10557-014-6530-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-014-6530-0

Keywords

Navigation