Skip to main content

Advertisement

Log in

Multiple roles of HOX proteins in Metastasis: Let me count the ways

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Knowledge of the role of HOX proteins in cancer has been steadily accumulating in the last 25 years. They are encoded by 39 HOX genes arranged in 4 distinct clusters, and have unique and redundant function in all types of cancers. Many HOX genes behave as oncogenic transcriptional factors regulating multiple pathways that are critical to malignant progression in a variety of tumors. Some HOX proteins have dual roles that are tumor-site specific, displaying both oncogenic and tumor suppressor function. The focus of this review is on how HOX proteins contribute to growth or suppression of metastasis. The review will cover HOX protein function in the critical aspects of epithelial-mesenchymal transition, in cancer stem cell sustenance and in therapy resistance, manifested as distant metastasis. The emerging role of adiposity in both initiation and progression of metastasis is described. Defining the role of HOX genes in the metastatic process has identified candidates for targeted cancer therapies that may combat the metastatic process. We will discuss potential therapeutic opportunities, particularly in pathways influenced by HOX proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Krumlauf, R. (2018). Hox genes, clusters and collinearity. The International Journal of Developmental Biology, 62(11-12), 659–663. https://doi.org/10.1387/ijdb.180330rr.

    Article  PubMed  CAS  Google Scholar 

  2. Rux, D. R., & Wellik, D. M. (2017). Hox genes in the adult skeleton: novel functions beyond embryonic development. Developmental Dynamics, 246(4), 310–317. https://doi.org/10.1002/dvdy.24482.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Alharbi, R. A., Pettengell, R., Pandha, H. S., & Morgan, R. (2013). The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia, 27(5), 1000–1008. https://doi.org/10.1038/leu.2012.356.

    Article  PubMed  CAS  Google Scholar 

  4. Collins, E. M., & Thompson, A. (2018). HOX genes in normal, engineered and malignant hematopoiesis. The International Journal of Developmental Biology, 62(11-12), 847–856. https://doi.org/10.1387/ijdb.180206at.

    Article  PubMed  CAS  Google Scholar 

  5. Adamaki, M., Goulielmaki, M., Christodoulou, I., Vlahopoulos, S., & Zoumpourlis, V. (2017). Homeobox gene involvement in normal hematopoiesis and in the pathogenesis of childhood leukemias. Critical Reviews in Oncogenesis, 22(3-4), 157–185. https://doi.org/10.1615/CritRevOncog.2017024465.

    Article  PubMed  Google Scholar 

  6. Krivtsov, A. V., Hoshii, T., & Armstrong, S. A. (2017). Mixed-lineage leukemia fusions and chromatin in leukemia. Cold Spring Harbor Perspectives in Medicine, 7(11). https://doi.org/10.1101/cshperspect.a026658.

  7. Shah, N., & Sukumar, S. (2010). The Hox genes and their roles in oncogenesis. Nature Reviews Cancer, 10(5), 361–371. https://doi.org/10.1038/nrc2826.

    Article  PubMed  CAS  Google Scholar 

  8. Bhatlekar, S., Fields, J. Z., & Boman, B. M. (2018). Role of HOX genes in stem cell differentiation and Cancer. Stem Cells International, 2018, 3569493–3569415. https://doi.org/10.1155/2018/3569493.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Steeg, P. S. (2016). Targeting metastasis. Nature Reviews Cancer, 16(4), 201–218. https://doi.org/10.1038/nrc.2016.25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gupta, G. P., & Massague, J. (2006). Cancer metastasis: building a framework. Cell, 127(4), 679–695. https://doi.org/10.1016/j.cell.2006.11.001.

    Article  CAS  Google Scholar 

  11. Achour, C., & Aguilo, F. (2018). Long non-coding RNA and polycomb: an intricate partnership in cancer biology. Frontiers in Bioscience (Landmark Ed), 23, 2106–2132.

    Article  CAS  Google Scholar 

  12. Wen, Y., Shu, F., Chen, Y., Chen, Y., Lan, Y., Duan, X., Zhao, S. C., & Zeng, G. (2018). The prognostic value of HOXA13 in solid tumors: A meta-analysis. Clinica Chimica Acta, 483, 64–68. https://doi.org/10.1016/j.cca.2018.04.024.

    Article  CAS  Google Scholar 

  13. Yu, M., Zhan, J., & Zhang, H. (2020). HOX family transcription factors: Related signaling pathways and post-translational modifications in cancer. Cellular Signalling, 66, 109469. https://doi.org/10.1016/j.cellsig.2019.109469.

    Article  PubMed  CAS  Google Scholar 

  14. Gerlinger, M., Rowan, A. J., Horswell, S., Math, M., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N., Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C. R., Nohadani, M., Eklund, A. C., Spencer-Dene, B., Clark, G., Pickering, L., Stamp, G., Gore, M., Szallasi, Z., Downward, J., Futreal, P. A., & Swanton, C. (2012). Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. The New England Journal of Medicine, 366(10), 883–892. https://doi.org/10.1056/NEJMoa1113205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lawson, D. A., Kessenbrock, K., Davis, R. T., Pervolarakis, N., & Werb, Z. (2018). Tumour heterogeneity and metastasis at single-cell resolution. Nature Cell Biology, 20(12), 1349–1360. https://doi.org/10.1038/s41556-018-0236-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Massague, J., & Obenauf, A. C. (2016). Metastatic colonization by circulating tumour cells. Nature, 529(7586), 298–306. https://doi.org/10.1038/nature17038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Celia-Terrassa, T., & Kang, Y. (2018). Metastatic niche functions and therapeutic opportunities. Nature Cell Biology, 20(8), 868–877. https://doi.org/10.1038/s41556-018-0145-9.

    Article  PubMed  CAS  Google Scholar 

  18. Peinado, H., Zhang, H., Matei, I. R., Costa-Silva, B., Hoshino, A., Rodrigues, G., Psaila, B., Kaplan, R. N., Bromberg, J. F., Kang, Y., Bissell, M. J., Cox, T. R., Giaccia, A. J., Erler, J. T., Hiratsuka, S., Ghajar, C. M., & Lyden, D. (2017). Pre-metastatic niches: organ-specific homes for metastases. Nature Reviews Cancer, 17(5), 302–317. https://doi.org/10.1038/nrc.2017.6.

    Article  PubMed  CAS  Google Scholar 

  19. Wan, L., Pantel, K., & Kang, Y. (2013). Tumor metastasis: moving new biological insights into the clinic. Nature Medicine, 19(11), 1450–1464. https://doi.org/10.1038/nm.3391.

    Article  PubMed  CAS  Google Scholar 

  20. Brabletz, T., Kalluri, R., Nieto, M. A., & Weinberg, R. A. (2018). EMT in cancer. Nature Reviews Cancer, 18(2), 128–134. https://doi.org/10.1038/nrc.2017.118.

    Article  PubMed  CAS  Google Scholar 

  21. Chaffer, C. L., San Juan, B. P., Lim, E., & Weinberg, R. A. (2016). EMT, cell plasticity and metastasis. Cancer Metastasis Reviews, 35(4), 645–654. https://doi.org/10.1007/s10555-016-9648-7.

    Article  PubMed  Google Scholar 

  22. Aiello, N. M., & Kang, Y. (2019). Context-dependent EMT programs in cancer metastasis. The Journal of Experimental Medicine, 216(5), 1016–1026. https://doi.org/10.1084/jem.20181827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Micalizzi, D. S., Farabaugh, S. M., & Ford, H. L. (2010). Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. Journal of Mammary Gland Biology and Neoplasia, 15(2), 117–134. https://doi.org/10.1007/s10911-010-9178-9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cheung, K. J., & Ewald, A. J. (2014). Illuminating breast cancer invasion: diverse roles for cell-cell interactions. Current Opinion in Cell Biology, 30, 99–111. https://doi.org/10.1016/j.ceb.2014.07.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Padmanaban, V., Krol, I., Suhail, Y., Szczerba, B. M., Aceto, N., Bader, J. S., & Ewald, A. J. (2019). E-cadherin is required for metastasis in multiple models of breast cancer. Nature, 573(7774), 439–444. https://doi.org/10.1038/s41586-019-1526-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lavenus, S. B., Tudor, S. M., Ullo, M. F., Vosatka, K. W., & Logue, J. S. (2020). A flexible network of vimentin intermediate filaments promotes migration of amoeboid cancer cells through confined environments. The Journal of Biological Chemistry, 295(19), 6700–6709. https://doi.org/10.1074/jbc.RA119.011537.

    Article  PubMed  Google Scholar 

  27. Turner, N., & Grose, R. (2010). Fibroblast growth factor signalling: from development to cancer. Nature Reviews Cancer, 10(2), 116–129. https://doi.org/10.1038/nrc2780.

    Article  PubMed  CAS  Google Scholar 

  28. Brewer, J. R., Mazot, P., & Soriano, P. (2016). Genetic insights into the mechanisms of Fgf signaling. Genes & Development, 30(7), 751–771. https://doi.org/10.1101/gad.277137.115.

    Article  CAS  Google Scholar 

  29. Lawson, C. D., & Burridge, K. (2014). The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases, 5, e27958. https://doi.org/10.4161/sgtp.27958.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yook, J. I., Li, X. Y., Ota, I., Hu, C., Kim, H. S., Kim, N. H., Cha, S. Y., Ryu, J. K., Choi, Y. J., Kim, J., Fearon, E. R., & Weiss, S. J. (2006). A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nature Cell Biology, 8(12), 1398–1406. https://doi.org/10.1038/ncb1508.

    Article  PubMed  CAS  Google Scholar 

  31. Birch, J. L., Coull, B. J., Spender, L. C., Watt, C., Willison, A., Syed, N., Chalmers, A. J., Hossain-Ibrahim, M. K., & Inman, G. J. (2020). Multifaceted transforming growth factor-beta (TGFbeta) signalling in glioblastoma. Cellular Signalling, 72, 109638. https://doi.org/10.1016/j.cellsig.2020.109638.

    Article  PubMed  CAS  Google Scholar 

  32. Kumar, A., Golani, A., & Kumar, L. D. (2020). EMT in breast cancer metastasis: an interplay of microRNAs, signaling pathways and circulating tumor cells. Frontiers in Bioscience (Landmark Ed), 25, 979–1010.

    Article  CAS  Google Scholar 

  33. Duan, R., Han, L., Wang, Q., Wei, J., Chen, L., Zhang, J., et al. (2015). HOXA13 is a potential GBM diagnostic marker and promotes glioma invasion by activating the Wnt and TGF-beta pathways. Oncotarget, 6(29), 27778–27793. https://doi.org/10.18632/oncotarget.4813.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Goncalves, C. S., Le Boiteux, E., Arnaud, P., & Costa, B. M. (2020). HOX gene cluster (de) regulation in brain: from neurodevelopment to malignant glial tumours. Cellular and Molecular Life Sciences. https://doi.org/10.1007/s00018-020-03508-9.

  35. Wu, X., Chen, H., Parker, B., Rubin, E., Zhu, T., Lee, J. S., Argani, P., & Sukumar, S. (2006). HOXB7, a homeodomain protein, is overexpressed in breast cancer and confers epithelial-mesenchymal transition. Cancer Research, 66(19), 9527–9534. https://doi.org/10.1158/0008-5472.CAN-05-4470.

    Article  PubMed  CAS  Google Scholar 

  36. Lee, J. Y., Hur, H., Yun, H. J., Kim, Y., Yang, S., Kim, S. I., & Kim, M. H. (2015). HOXB5 promotes the proliferation and invasion of breast cancer cells. International Journal of Biological Sciences, 11(6), 701–711. https://doi.org/10.7150/ijbs.11431.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhang, B., Li, N., & Zhang, H. (2018). Knockdown of Homeobox B5 (HOXB5) inhibits cell Proliferation, Migration, and Invasion in Non-Small Cell Lung Cancer Cells Through Inactivation of the Wnt/beta-catenin pathway. Oncology Research, 26(1), 37–44. https://doi.org/10.3727/096504017X14900530835262.

    Article  PubMed  Google Scholar 

  38. Zhan, J., Wang, P., Niu, M., Wang, Y., Zhu, X., Guo, Y., & Zhang, H. (2015). High expression of transcriptional factor HoxB9 predicts poor prognosis in patients with lung adenocarcinoma. Histopathology, 66(7), 955–965. https://doi.org/10.1111/his.12585.

    Article  PubMed  Google Scholar 

  39. Bitu, C. C., Destro, M. F., Carrera, M., da Silva, S. D., Graner, E., Kowalski, L. P., et al. (2012). HOXA1 is overexpressed in oral squamous cell carcinomas and its expression is correlated with poor prognosis. BMC Cancer, 12, 146. https://doi.org/10.1186/1471-2407-12-146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Carrera, M., Bitu, C. C., de Oliveira, C. E., Cervigne, N. K., Graner, E., Manninen, A., Salo, T., & Coletta, R. D. (2015). HOXA10 controls proliferation, migration and invasion in oral squamous cell carcinoma. International Journal of Clinical and Experimental Pathology, 8(4), 3613–3623.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Xue, M., Zhu, F. Y., Chen, L., & Wang, K. (2017). HoxB9 promotes the migration and invasion via TGF-beta1/Smad2/Slug signaling pathway in oral squamous cell carcinoma. American Journal of Translational Research, 9(3), 1151–1161.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Bhatlekar, S., Ertel, A., Gonye, G. E., Fields, J. Z., & Boman, B. M. (2019). Gene expression signatures for HOXA4, HOXA9, and HOXD10 reveal alterations in transcriptional regulatory networks in colon cancer. Journal of Cellular Physiology, 234(8), 13042–13056. https://doi.org/10.1002/jcp.27975.

    Article  PubMed  CAS  Google Scholar 

  43. De Vita, G., Barba, P., Odartchenko, N., Givel, J. C., Freschi, G., Bucciarelli, G., et al. (1993). Expression of homeobox-containing genes in primary and metastatic colorectal cancer. European Journal of Cancer, 29A(6), 887–893. https://doi.org/10.1016/s0959-8049(05)80432-0.

    Article  PubMed  Google Scholar 

  44. Cui, Y., Zhang, C., Wang, Y., Ma, S., Cao, W., & Guan, F. (2020). HOXC11 functions as a novel oncogene in human colon adenocarcinoma and kidney renal clear cell carcinoma. Life Sciences, 243, 117230. https://doi.org/10.1016/j.lfs.2019.117230.

    Article  PubMed  CAS  Google Scholar 

  45. Liu, S., Jin, K., Hui, Y., Fu, J., Jie, C., Feng, S., Reisman, D., Wang, Q., Fan, D., Sukumar, S., & Chen, H. (2015). HOXB7 promotes malignant progression by activating the TGFbeta signaling pathway. Cancer Research, 75(4), 709–719. https://doi.org/10.1158/0008-5472.CAN-14-3100.

    Article  PubMed  CAS  Google Scholar 

  46. Tsuboi, M., Taniuchi, K., Shimizu, T., Saito, M., & Saibara, T. (2017). The transcription factor HOXB7 regulates ERK kinase activity and thereby stimulates the motility and invasiveness of pancreatic cancer cells. The Journal of Biological Chemistry, 292(43), 17681–17702. https://doi.org/10.1074/jbc.M116.772780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Liu, H., Zhang, M., Xu, S., Zhang, J., Zou, J., Yang, C., Zhang, Y., Gong, C., Kai, Y., & Li, Y. (2018). HOXC8 promotes proliferation and migration through transcriptional up-regulation of TGFbeta1 in non-small cell lung cancer. Oncogenesis, 7(2), 1. https://doi.org/10.1038/s41389-017-0016-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Liu, M., Xiao, Y., Tang, W., Li, J., Hong, L., Dai, W., Zhang, W., Peng, Y., Wu, X., Wang, J., Chen, Y., Bai, Y., Lin, J., Yang, Q., Wang, Y., Lin, Z., Liu, S., Xiong, J., Wang, J., & Xiang, L. (2020). HOXD9 promote epithelial-mesenchymal transition and metastasis in colorectal carcinoma. Cancer Medicine, 9, 3932–3943. https://doi.org/10.1002/cam4.2967.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lv, X., Li, L., Lv, L., Qu, X., Jin, S., Li, K., Deng, X., Cheng, L., He, H., & Dong, L. (2015). HOXD9 promotes epithelial-mesenchymal transition and cancer metastasis by ZEB1 regulation in hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research, 34, 133. https://doi.org/10.1186/s13046-015-0245-3.

    Article  CAS  Google Scholar 

  50. Tang, B., Qi, G., Sun, X., Tang, F., Yuan, S., Wang, Z., Liang, X., Li, B., Yu, S., Liu, J., Huang, Q., Wei, Y., Zhai, R., Lei, B., Guo, X., & He, S. (2016). HOXA7 plays a critical role in metastasis of liver cancer associated with activation of Snail. Molecular Cancer, 15(1), 57. https://doi.org/10.1186/s12943-016-0540-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Chang, C. J., Chen, Y. L., Hsieh, C. H., Liu, Y. J., Yu, S. L., Chen, J. J. W., & Wang, C. C. (2017). HOXA5 and p53 cooperate to suppress lung cancer cell invasion and serve as good prognostic factors in non-small cell lung cancer. Journal of Cancer, 8(6), 1071–1081. https://doi.org/10.7150/jca.17295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Zhang, M. L., Nie, F. Q., Sun, M., Xia, R., Xie, M., Lu, K. H., & Li, W. (2015). HOXA5 indicates poor prognosis and suppresses cell proliferation by regulating p21 expression in non small cell lung cancer. Tumour Biology, 36(5), 3521–3531. https://doi.org/10.1007/s13277-014-2988-4.

    Article  PubMed  CAS  Google Scholar 

  53. Wu, Y., Zhou, T., Tang, Q., & Xiao, J. (2019). HOXA5 inhibits tumor growth of gastric cancer under the regulation of microRNA-196a. Gene, 681, 62–68. https://doi.org/10.1016/j.gene.2018.09.051.

    Article  PubMed  CAS  Google Scholar 

  54. Yoshida, H., Broaddus, R., Cheng, W., Xie, S., & Naora, H. (2006). Deregulation of the HOXA10 homeobox gene in endometrial carcinoma: role in epithelial-mesenchymal transition. Cancer Research, 66(2), 889–897. https://doi.org/10.1158/0008-5472.CAN-05-2828.

    Article  PubMed  CAS  Google Scholar 

  55. Zhang, J., Liu, S., Zhang, D., Ma, Z., & Sun, L. (2019). Homeobox D10, a tumor suppressor, inhibits the proliferation and migration of esophageal squamous cell carcinoma. Journal of Cellular Biochemistry, 120(8), 13717–13725. https://doi.org/10.1002/jcb.28644.

    Article  PubMed  CAS  Google Scholar 

  56. Pineault, K. M., Song, J. Y., Kozloff, K. M., Lucas, D., & Wellik, D. M. (2019). Hox11 expressing regional skeletal stem cells are progenitors for osteoblasts, chondrocytes and adipocytes throughout life. Nature Communications, 10(1), 3168. https://doi.org/10.1038/s41467-019-11100-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Myers, C., Charboneau, A., Cheung, I., Hanks, D., & Boudreau, N. (2002). Sustained expression of homeobox D10 inhibits angiogenesis. The American Journal of Pathology, 161(6), 2099–2109. https://doi.org/10.1016/S0002-9440(10)64488-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Smith, J., Zyoud, A., & Allegrucci, C. (2019). A case of identity: HOX genes in normal and cancer stem cells. Cancers (Basel), 11(4). https://doi.org/10.3390/cancers11040512.

  59. Fidler, I. J., & Kripke, M. L. (2015). The challenge of targeting metastasis. Cancer Metastasis Reviews, 34(4), 635–641. https://doi.org/10.1007/s10555-015-9586-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Takeda, A., Goolsby, C., & Yaseen, N. R. (2006). NUP98-HOXA9 induces long-term proliferation and blocks differentiation of primary human CD34+ hematopoietic cells. Cancer Research, 66(13), 6628–6637. https://doi.org/10.1158/0008-5472.CAN-06-0458.

    Article  PubMed  CAS  Google Scholar 

  61. Monterisi, S., Lo Riso, P., Russo, K., Bertalot, G., Vecchi, M., Testa, G., di Fiore, P. P., & Bianchi, F. (2018). HOXB7 overexpression in lung cancer is a hallmark of acquired stem-like phenotype. Oncogene, 37(26), 3575–3588. https://doi.org/10.1038/s41388-018-0229-9.

    Article  PubMed  CAS  Google Scholar 

  62. Jin, K., Kong, X., Shah, T., Penet, M. F., Wildes, F., Sgroi, D. C., Ma, X. J., Huang, Y., Kallioniemi, A., Landberg, G., Bieche, I., Wu, X., Lobie, P. E., Davidson, N. E., Bhujwalla, Z. M., Zhu, T., & Sukumar, S. (2012). The HOXB7 protein renders breast cancer cells resistant to tamoxifen through activation of the EGFR pathway. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 2736–2741. https://doi.org/10.1073/pnas.1018859108.

    Article  PubMed  Google Scholar 

  63. Shaoqiang, C., Yue, Z., Yang, L., Hong, Z., Lina, Z., Da, P., et al. (2013). Expression of HOXD3 correlates with shorter survival in patients with invasive breast cancer. Clinical & Experimental Metastasis, 30(2), 155–163. https://doi.org/10.1007/s10585-012-9524-y.

    Article  CAS  Google Scholar 

  64. Shah, N., Jin, K., Cruz, L. A., Park, S., Sadik, H., Cho, S., Goswami, C. P., Nakshatri, H., Gupta, R., Chang, H. Y., Zhang, Z., Cimino-Mathews, A., Cope, L., Umbricht, C., & Sukumar, S. (2013). HOXB13 mediates tamoxifen resistance and invasiveness in human breast cancer by suppressing ERalpha and inducing IL-6 expression. Cancer Research, 73(17), 5449–5458. https://doi.org/10.1158/0008-5472.CAN-13-1178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Jin, K., Park, S., Teo, W. W., Korangath, P., Cho, S. S., Yoshida, T., Gy rffy, B., Goswami, C. P., Nakshatri, H., Cruz, L. A., Zhou, W., Ji, H., Su, Y., Ekram, M., Wu, Z., Zhu, T., Polyak, K., & Sukumar, S. (2015). HOXB7 Is an ERalpha cofactor in the activation of HER2 and multiple ER target genes leading to endocrine resistance. Cancer Discovery, 5(9), 944–959. https://doi.org/10.1158/2159-8290.CD-15-0090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yang, S., Lee, J. Y., Hur, H., Oh, J. H., & Kim, M. H. (2018). Up-regulation of HOXB cluster genes are epigenetically regulated in tamoxifen-resistant MCF7 breast cancer cells. BMB Reports, 51(9), 450–455. https://doi.org/10.5483/bmbrep.2018.51.9.020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Lee, J. Y., Kim, J. M., Jeong, D. S., & Kim, M. H. (2018). Transcriptional activation of EGFR by HOXB5 and its role in breast cancer cell invasion. Biochemical and Biophysical Research Communications, 503(4), 2924–2930. https://doi.org/10.1016/j.bbrc.2018.08.071.

    Article  PubMed  CAS  Google Scholar 

  68. Watanabe, Y., Saito, M., Saito, K., Matsumoto, Y., Kanke, Y., Onozawa, H., Hayase, S., Sakamoto, W., Ishigame, T., Momma, T., Ohki, S., & Takenoshita, S. (2018). Upregulated HOXA9 expression is associated with lymph node metastasis in colorectal cancer. Oncology Letters, 15(3), 2756–2762. https://doi.org/10.3892/ol.2017.7650.

    Article  PubMed  CAS  Google Scholar 

  69. Malek, R., Gajula, R. P., Williams, R. D., Nghiem, B., Simons, B. W., Nugent, K., Wang, H., Taparra, K., Lemtiri-Chlieh, G., Yoon, A. R., True, L., An, S. S., DeWeese, T. L., Ross, A. E., Schaeffer, E. M., Pienta, K. J., Hurley, P. J., Morrissey, C., & Tran, P. T. (2017). TWIST1-WDR5-Hottip regulates Hoxa9 chromatin to facilitate prostate cancer metastasis. Cancer Research, 77(12), 3181–3193. https://doi.org/10.1158/0008-5472.CAN-16-2797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Bhanvadia, R. R., VanOpstall, C., Brechka, H., Barashi, N. S., Gillard, M., McAuley, E. M., Vasquez, J. M., Paner, G., Chan, W. C., Andrade, J., de Marzo, A. M., Han, M., Szmulewitz, R. Z., & Vander Griend, D. J. (2018). MEIS1 and MEIS2 expression and prostate cancer progression: a role for HOXB13 binding partners in metastatic disease. Clinical Cancer Research, 24(15), 3668–3680. https://doi.org/10.1158/1078-0432.CCR-17-3673.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Wang, H., Liu, G., Shen, D., Ye, H., Huang, J., Jiao, L., et al. (2015). HOXA1 enhances the cell proliferation, invasion and metastasis of prostate cancer cells. Oncology Reports, 34(3), 1203–1210. https://doi.org/10.3892/or.2015.4085.

    Article  PubMed  CAS  Google Scholar 

  72. Kristiansen, I., Stephan, C., Jung, K., Dietel, M., Rieger, A., Tolkach, Y., et al. (2017). Sensitivity of HOXB13 as a diagnostic immunohistochemical marker of prostatic origin in prostate cancer metastases: comparison to PSA, prostein, androgen receptor, ERG, NKX3.1, PSAP, and PSMA. nternational Journal of Molecular Sciences, 18(6). https://doi.org/10.3390/ijms18061151.

  73. Kuo, T. L., Cheng, K. H., Chen, L. T., & Hung, W. C. (2019). Deciphering the potential role of Hox genes in pancreatic cancer. Cancers (Basel), 11(5). https://doi.org/10.3390/cancers11050734.

  74. Nguyen Kovochich, A., Arensman, M., Lay, A. R., Rao, N. P., Donahue, T., Li, X., French, S. W., & Dawson, D. W. (2013). HOXB7 promotes invasion and predicts survival in pancreatic adenocarcinoma. Cancer, 119(3), 529–539. https://doi.org/10.1002/cncr.27725.

    Article  PubMed  CAS  Google Scholar 

  75. Care, A., Silvani, A., Meccia, E., Mattia, G., Stoppacciaro, A., Parmiani, G., et al. (1996). HOXB7 constitutively activates basic fibroblast growth factor in melanomas. Molecular and Cellular Biology, 16(9), 4842–4851. https://doi.org/10.1128/mcb.16.9.4842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Maeda, K., Hamada, J., Takahashi, Y., Tada, M., Yamamoto, Y., Sugihara, T., et al. (2005). Altered expressions of HOX genes in human cutaneous malignant melanoma. International Journal of Cancer, 114(3), 436–441. https://doi.org/10.1002/ijc.20706.

    Article  PubMed  CAS  Google Scholar 

  77. Dai, L., Hu, W., Yang, Z., Chen, D., He, B., Chen, Y., Zhou, L., Xie, H., Wu, J., & Zheng, S. (2019). Upregulated expression of HOXB7 in intrahepatic cholangiocarcinoma is associated with tumor cell metastasis and poor prognosis. Laboratory Investigation, 99(6), 736–748. https://doi.org/10.1038/s41374-018-0150-4.

    Article  PubMed  CAS  Google Scholar 

  78. Yang, Y., Chen, J., & Chen, Q. (2017). Upregulation of HOXB7 promotes proliferation and metastasis of osteosarcoma cells. Molecular Medicine Reports, 16(3), 2773–2778. https://doi.org/10.3892/mmr.2017.6906.

    Article  PubMed  CAS  Google Scholar 

  79. Guo, J., Zhang, T., & Dou, D. (2019). Knockdown of HOXB8 inhibits tumor growth and metastasis by the inactivation of Wnt/beta-catenin signaling pathway in osteosarcoma. European Journal of Pharmacology, 854, 22–27. https://doi.org/10.1016/j.ejphar.2019.04.004.

    Article  PubMed  CAS  Google Scholar 

  80. Huan, H. B., Yang, D. P., Wen, X. D., Chen, X. J., Zhang, L., Wu, L. L., Bie, P., & Xia, F. (2017). HOXB7 accelerates the malignant progression of hepatocellular carcinoma by promoting stemness and epithelial-mesenchymal transition. Journal of Experimental & Clinical Cancer Research, 36(1), 86. https://doi.org/10.1186/s13046-017-0559-4.

    Article  CAS  Google Scholar 

  81. Wang, W. M., Xu, Y., Wang, Y. H., Sun, H. X., Sun, Y. F., He, Y. F., et al. (2017). HOXB7 promotes tumor progression via bFGF-induced activation of MAPK/ERK pathway and indicated poor prognosis in hepatocellular carcinoma. Oncotarget, 8(29), 47121–47135. https://doi.org/10.18632/oncotarget.17004.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Teo, W. W., Merino, V. F., Cho, S., Korangath, P., Liang, X., Wu, R. C., et al. (2016). HOXA5 determines cell fate transition and impedes tumor initiation and progression in breast cancer through regulation of E-cadherin and CD24. Oncogene, 35(42), 5539–5551. https://doi.org/10.1038/onc.2016.95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Chen, H., Zhang, H., Lee, J., Liang, X., Wu, X., Zhu, T., Lo, P. K., Zhang, X., & Sukumar, S. (2007). HOXA5 acts directly downstream of retinoic acid receptor beta and contributes to retinoic acid-induced apoptosis and growth inhibition. Cancer Research, 67(17), 8007–8013. https://doi.org/10.1158/0008-5472.CAN-07-1405.

    Article  PubMed  CAS  Google Scholar 

  84. Ordonez-Moran, P., Dafflon, C., Imajo, M., Nishida, E., & Huelsken, J. (2015). HOXA5 counteracts stem cell traits by inhibiting Wnt signaling in colorectal cancer. Cancer Cell, 28(6), 815–829. https://doi.org/10.1016/j.ccell.2015.11.001.

    Article  PubMed  CAS  Google Scholar 

  85. Errico, M. C., Jin, K., Sukumar, S., & Care, A. (2016). The widening sphere of influence of HOXB7 in solid tumors. Cancer Research, 76(10), 2857–2862. https://doi.org/10.1158/0008-5472.CAN-15-3444.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Chen, H., Lee, J. S., Liang, X., Zhang, H., Zhu, T., Zhang, Z., Taylor, M. E., Zahnow, C., Feigenbaum, L., Rein, A., & Sukumar, S. (2008). Hoxb7 inhibits transgenic HER-2/neu-induced mouse mammary tumor onset but promotes progression and lung metastasis. Cancer Research, 68(10), 3637–3644. https://doi.org/10.1158/0008-5472.CAN-07-2926.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Jerevall, P. L., Ma, X. J., Li, H., Salunga, R., Kesty, N. C., Erlander, M. G., Sgroi, D. C., Holmlund, B., Skoog, L., Fornander, T., Nordenskjöld, B., & Stål, O. (2011). Prognostic utility of HOXB13:IL17BR and molecular grade index in early-stage breast cancer patients from the Stockholm trial. British Journal of Cancer, 104(11), 1762–1769. https://doi.org/10.1038/bjc.2011.145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Kim, Y. R., Kim, I. J., Kang, T. W., Choi, C., Kim, K. K., Kim, M. S., Nam, K. I., & Jung, C. (2014). HOXB13 downregulates intracellular zinc and increases NF-kappaB signaling to promote prostate cancer metastasis. Oncogene, 33(37), 4558–4567. https://doi.org/10.1038/onc.2013.404.

    Article  PubMed  CAS  Google Scholar 

  89. Yao, J., Chen, Y., Nguyen, D. T., Thompson, Z. J., Eroshkin, A. M., Nerlakanti, N., Patel, A. K., Agarwal, N., Teer, J. K., Dhillon, J., Coppola, D., Zhang, J., Perera, R., Kim, Y., & Mahajan, K. (2019). The Homeobox gene, HOXB13, regulates a mitotic protein-kinase interaction network in metastatic prostate cancers. Scientific Reports, 9(1), 9715. https://doi.org/10.1038/s41598-019-46064-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Nerlakanti, N., Yao, J., Nguyen, D. T., Patel, A. K., Eroshkin, A. M., Lawrence, H. R., Ayaz, M., Kuenzi, B. M., Agarwal, N., Chen, Y., Gunawan, S., Karim, R. M., Berndt, N., Puskas, J., Magliocco, A. M., Coppola, D., Dhillon, J., Zhang, J., Shymalagovindarajan, S., Rix, U., Kim, Y., Perera, R., Lawrence, N. J., Schonbrunn, E., & Mahajan, K. (2018). Targeting the BRD4-HOXB13 coregulated transcriptional networks with bromodomain-kinase inhibitors to suppress metastatic castration-resistant prostate cancer. Molecular Cancer Therapeutics, 17(12), 2796–2810. https://doi.org/10.1158/1535-7163.MCT-18-0602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Zhan, J., Wang, P., Li, S., Song, J., He, H., Wang, Y., Liu, Z., Wang, F., Bai, H., Fang, W., du, Q., Ye, M., Chang, Z., Wang, J., & Zhang, H. (2019). HOXB13 networking with ABCG1/EZH2/Slug mediates metastasis and confers resistance to cisplatin in lung adenocarcinoma patients. Theranostics, 9(7), 2084–2099. https://doi.org/10.7150/thno.29463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ma, X. J., Wang, Z., Ryan, P. D., Isakoff, S. J., Barmettler, A., Fuller, A., Muir, B., Mohapatra, G., Salunga, R., Tuggle, J. T., Tran, Y., Tran, D., Tassin, A., Amon, P., Wang, W., Wang, W., Enright, E., Stecker, K., Estepa-Sabal, E., Smith, B., Younger, J., Balis, U., Michaelson, J., Bhan, A., Habin, K., Baer, T. M., Brugge, J., Haber, D. A., Erlander, M. G., & Sgroi, D. C. (2004). A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell, 5(6), 607–616. https://doi.org/10.1016/j.ccr.2004.05.015.

    Article  PubMed  CAS  Google Scholar 

  93. Wang, Z., Dahiya, S., Provencher, H., Muir, B., Carney, E., Coser, K., Shioda, T., Ma, X. J., & Sgroi, D. C. (2007). The prognostic biomarkers HOXB13, IL17BR, and CHDH are regulated by estrogen in breast cancer. Clinical Cancer Research, 13(21), 6327–6334. https://doi.org/10.1158/1078-0432.CCR-07-0310.

    Article  PubMed  CAS  Google Scholar 

  94. Prechtel, D., & Prechtel, K. (1993). Quantitative determination of steroid hormone receptors in breast cancer tissue outside tumor centers. Pathologe, 14(1), 16–20.

    PubMed  CAS  Google Scholar 

  95. Ma, X. J., Hilsenbeck, S. G., Wang, W., Ding, L., Sgroi, D. C., Bender, R. A., Osborne, C. K., Allred, D. C., & Erlander, M. G. (2006). The HOXB13:IL17BR expression index is a prognostic factor in early-stage breast cancer. Journal of Clinical Oncology, 24(28), 4611–4619. https://doi.org/10.1200/JCO.2006.06.6944.

    Article  PubMed  CAS  Google Scholar 

  96. Ma, X. J., Salunga, R., Dahiya, S., Wang, W., Carney, E., Durbecq, V., Harris, A., Goss, P., Sotiriou, C., Erlander, M., & Sgroi, D. (2008). A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clinical Cancer Research, 14(9), 2601–2608. https://doi.org/10.1158/1078-0432.CCR-07-5026.

    Article  PubMed  CAS  Google Scholar 

  97. Zabalza, C. V., Adam, M., Burdelski, C., Wilczak, W., Wittmer, C., Kraft, S., et al. (2015). HOXB13 overexpression is an independent predictor of early PSA recurrence in prostate cancer treated by radical prostatectomy. Oncotarget, 6(14), 12822–12834. https://doi.org/10.18632/oncotarget.3431.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Pomerantz, M. M., Li, F., Takeda, D. Y., Lenci, R., Chonkar, A., Chabot, M., Cejas, P., Vazquez, F., Cook, J., Shivdasani, R. A., Bowden, M., Lis, R., Hahn, W. C., Kantoff, P. W., Brown, M., Loda, M., Long, H. W., & Freedman, M. L. (2015). The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nature Genetics, 47(11), 1346–1351. https://doi.org/10.1038/ng.3419.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Berger, A., Brady, N. J., Bareja, R., Robinson, B., Conteduca, V., Augello, M. A., Puca, L., Ahmed, A., Dardenne, E., Lu, X., Hwang, I., Bagadion, A. M., Sboner, A., Elemento, O., Paik, J., Yu, J., Barbieri, C. E., Dephoure, N., Beltran, H., & Rickman, D. S. (2019). N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer. The Journal of Clinical Investigation, 130, 3924–3940. https://doi.org/10.1172/JCI127961.

    Article  Google Scholar 

  100. Sadik, H., Korangath, P., Nguyen, N. K., Gyorffy, B., Kumar, R., Hedayati, M., Teo, W. W., Park, S., Panday, H., Munoz, T. G., Menyhart, O., Shah, N., Pandita, R. K., Chang, J. C., DeWeese, T., Chang, H. Y., Pandita, T. K., & Sukumar, S. (2016). HOXC10 expression supports the development of chemotherapy resistance by fine tuning DNA repair in breast cancer cells. Cancer Research, 76(15), 4443–4456. https://doi.org/10.1158/0008-5472.CAN-16-0774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Pathiraja, T. N., Nayak, S. R., Xi, Y., Jiang, S., Garee, J. P., Edwards, D. P., et al. (2014). Epigenetic reprogramming of HOXC10 in endocrine-resistant breast cancer. Science Translational Medicine, 6(229), 229ra241. https://doi.org/10.1126/scitranslmed.3008326.

    Article  CAS  Google Scholar 

  102. Dang, Y., Chen, J., Feng, W., Qiao, C., Han, W., Nie, Y., Wu, K., Fan, D., & Xia, L. (2020). Interleukin 1beta-mediated HOXC10 overexpression promotes hepatocellular carcinoma metastasis by upregulating PDPK1 and VASP. Theranostics, 10(8), 3833–3848. https://doi.org/10.7150/thno.41712.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Li, J., Tong, G., Huang, C., Luo, Y., Wang, S., Zhang, Y., Cheng, B., Zhang, Z., Wu, X., Liu, Q., Li, M., Li, L., & Ni, B. (2020). HOXC10 promotes cell migration, invasion, and tumor growth in gastric carcinoma cells through upregulating proinflammatory cytokines. Journal of Cellular Physiology, 235(4), 3579–3591. https://doi.org/10.1002/jcp.29246.

    Article  PubMed  CAS  Google Scholar 

  104. Guo, C., Hou, J., Ao, S., Deng, X., & Lyu, G. (2017). HOXC10 up-regulation promotes gastric cancer cell proliferation and metastasis through MAPK pathway. Chinese Journal of Cancer Research, 29(6), 572–580. https://doi.org/10.21147/j.issn.1000-9604.2017.06.12.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tang, X. L., Ding, B. X., Hua, Y., Chen, H., Wu, T., Chen, Z. Q., & Yuan, C. H. (2017). HOXC10 promotes the metastasis of human lung adenocarcinoma and indicates poor survival outcome. Frontiers in Physiology, 8, 557. https://doi.org/10.3389/fphys.2017.00557.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Dai, B. W., Yang, Z. M., Deng, P., Chen, Y. R., He, Z. J., Yang, X., Zhang, S., Wu, H. J., & Ren, Z. H. (2019). HOXC10 promotes migration and invasion via the WNT-EMT signaling pathway in oral squamous cell carcinoma. Journal of Cancer, 10(19), 4540–4551. https://doi.org/10.7150/jca.30645.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Tang, Q. Q., & Lane, M. D. (2012). Adipogenesis: from stem cell to adipocyte. Annual Review of Biochemistry, 81, 715–736. https://doi.org/10.1146/annurev-biochem-052110-115718.

    Article  PubMed  CAS  Google Scholar 

  108. Ahmadian, M., Suh, J. M., Hah, N., Liddle, C., Atkins, A. R., Downes, M., & Evans, R. M. (2013). PPARgamma signaling and metabolism: the good, the bad and the future. Nature Medicine, 19(5), 557–566. https://doi.org/10.1038/nm.3159.

    Article  PubMed  CAS  Google Scholar 

  109. Nieman, K. M., Romero, I. L., Van Houten, B., & Lengyel, E. (2013). Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochimica et Biophysica Acta, 1831(10), 1533–1541. https://doi.org/10.1016/j.bbalip.2013.02.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Parida, S., Siddharth, S., & Sharma, D. (2019). Adiponectin, obesity, and cancer: clash of the bigwigs in health and disease. International Journal of Molecular Sciences, 20(10). https://doi.org/10.3390/ijms20102519.

  111. Avgerinos, K. I., Spyrou, N., Mantzoros, C. S., & Dalamaga, M. (2019). Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism, 92, 121–135. https://doi.org/10.1016/j.metabol.2018.11.001.

    Article  PubMed  CAS  Google Scholar 

  112. Procino, A., & Cillo, C. (2013). The HOX genes network in metabolic diseases. Cell Biology International, 37(11), 1145–1148. https://doi.org/10.1002/cbin.10145.

    Article  PubMed  CAS  Google Scholar 

  113. Cantile, M., Procino, A., D’Armiento, M., Cindolo, L., & Cillo, C. (2003). HOX gene network is involved in the transcriptional regulation of in vivo human adipogenesis. Journal of Cellular Physiology, 194(2), 225–236. https://doi.org/10.1002/jcp.10210.

    Article  PubMed  CAS  Google Scholar 

  114. Karastergiou, K., Fried, S. K., Xie, H., Lee, M. J., Divoux, A., Rosencrantz, M. A., Chang, R. J., & Smith, S. R. (2013). Distinct developmental signatures of human abdominal and gluteal subcutaneous adipose tissue depots. The Journal of Clinical Endocrinology and Metabolism, 98(1), 362–371. https://doi.org/10.1210/jc.2012-2953.

    Article  PubMed  CAS  Google Scholar 

  115. Gesta, S., Bluher, M., Yamamoto, Y., Norris, A. W., Berndt, J., Kralisch, S., Boucher, J., Lewis, C., & Kahn, C. R. (2006). Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6676–6681. https://doi.org/10.1073/pnas.0601752103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Dankel, S. N., Fadnes, D. J., Stavrum, A. K., Stansberg, C., Holdhus, R., Hoang, T., Veum, V. L., Christensen, B. J., Våge, V., Sagen, J. V., Steen, V. M., & Mellgren, G. (2010). Switch from stress response to homeobox transcription factors in adipose tissue after profound fat loss. PLoS One, 5(6), e11033. https://doi.org/10.1371/journal.pone.0011033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Foppiani, E. M., Candini, O., Mastrolia, I., Murgia, A., Grisendi, G., Samarelli, A. V., Boscaini, G., Pacchioni, L., Pinelli, M., de Santis, G., Horwitz, E. M., Veronesi, E., & Dominici, M. (2019). Impact of HOXB7 overexpression on human adipose-derived mesenchymal progenitors. Stem Cell Research & Therapy, 10(1), 101. https://doi.org/10.1186/s13287-019-1200-6.

    Article  CAS  Google Scholar 

  118. Seale, P., Conroe, H. M., Estall, J., Kajimura, S., Frontini, A., Ishibashi, J., Cohen, P., Cinti, S., & Spiegelman, B. M. (2011). Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. The Journal of Clinical Investigation, 121(1), 96–105. https://doi.org/10.1172/JCI44271.

    Article  PubMed  CAS  Google Scholar 

  119. Nakagami, H. (2013). The mechanism of white and brown adipocyte differentiation. Diabetes and Metabolism Journal, 37(2), 85–90. https://doi.org/10.4093/dmj.2013.37.2.85.

    Article  PubMed  Google Scholar 

  120. Foucher, I., Volovitch, M., Frain, M., Kim, J. J., Souberbielle, J. C., Gan, L., Unterman, T. G., Prochiantz, A., & Trembleau, A. (2002). Hoxa5 overexpression correlates with IGFBP1 upregulation and postnatal dwarfism: evidence for an interaction between Hoxa5 and Forkhead box transcription factors. Development, 129(17), 4065–4074.

    PubMed  CAS  Google Scholar 

  121. Cao, W., Zhang, T., Feng, R., Xia, T., Huang, H., Liu, C., & Sun, C. (2019). Hoxa5 alleviates obesity-induced chronic inflammation by reducing ER stress and promoting M2 macrophage polarization in mouse adipose tissue. Journal of Cellular and Molecular Medicine, 23(10), 7029–7042. https://doi.org/10.1111/jcmm.14600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Cao, W., Xu, Y., Luo, D., Saeed, M., & Sun, C. (2018). Hoxa5 promotes adipose differentiation via increasing DNA methylation level and inhibiting PKA/HSL signal pathway in mice. Cellular Physiology and Biochemistry, 45(3), 1023–1033. https://doi.org/10.1159/000487343.

    Article  PubMed  CAS  Google Scholar 

  123. Feng, F., Ren, Q., Wu, S., Saeed, M., & Sun, C. (2017). Hoxa5 increases mitochondrial apoptosis by inhibiting Akt/mTORC1/S6K1 pathway in mice white adipocytes. Oncotarget, 8(56), 95332–95345. https://doi.org/10.18632/oncotarget.20521.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Cao, W., Huang, H., Xia, T., Liu, C., Muhammad, S., & Sun, C. (2018). Homeobox a5 promotes white adipose tissue browning through inhibition of the tenascin C/toll-like receptor 4/nuclear factor kappa B inflammatory signaling in mice. Frontiers in Immunology, 9, 647. https://doi.org/10.3389/fimmu.2018.00647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Parrillo, L., Costa, V., Raciti, G. A., Longo, M., Spinelli, R., Esposito, R., Nigro, C., Vastolo, V., Desiderio, A., Zatterale, F., Ciccodicola, A., Formisano, P., Miele, C., & Beguinot, F. (2016). Hoxa5 undergoes dynamic DNA methylation and transcriptional repression in the adipose tissue of mice exposed to high-fat diet. International Journal of Obesity, 40(6), 929–937. https://doi.org/10.1038/ijo.2016.36.

    Article  PubMed  CAS  Google Scholar 

  126. Divoux, A., Sandor, K., Bojcsuk, D., Talukder, A., Li, X., Balint, B. L., Osborne, T. F., & Smith, S. R. (2018). Differential open chromatin profile and transcriptomic signature define depot-specific human subcutaneous preadipocytes: primary outcomes. Clinical Epigenetics, 10(1), 148. https://doi.org/10.1186/s13148-018-0582-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Ng, Y., Tan, S. X., Chia, S. Y., Tan, H. Y., Gun, S. Y., Sun, L., et al. (2017). HOXC10 suppresses browning of white adipose tissues. Experimental & Molecular Medicine, 49(2), e292. https://doi.org/10.1038/emm.2016.144.

    Article  CAS  Google Scholar 

  128. Breitfeld, J., Kehr, S., Muller, L., Stadler, P. F., Bottcher, Y., Bluher, M., et al. (2020). Developmentally driven changes in adipogenesis in different fat depots are related to obesity. Frontiers in Endocrinology (Lausanne), 11, 138. https://doi.org/10.3389/fendo.2020.00138.

    Article  Google Scholar 

  129. Morgan, R., Boxall, A., Harrington, K. J., Simpson, G. R., Gillett, C., Michael, A., & Pandha, H. S. (2012). Targeting the HOX/PBX dimer in breast cancer. Breast Cancer Research and Treatment, 136(2), 389–398. https://doi.org/10.1007/s10549-012-2259-2.

    Article  PubMed  CAS  Google Scholar 

  130. Morgan, R., Simpson, G., Gray, S., Gillett, C., Tabi, Z., Spicer, J., Harrington, K. J., & Pandha, H. S. (2016). HOX transcription factors are potential targets and markers in malignant mesothelioma. BMC Cancer, 16, 85. https://doi.org/10.1186/s12885-016-2106-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Morgan, R., Boxall, A., Harrington, K. J., Simpson, G. R., Michael, A., & Pandha, H. S. (2014). Targeting HOX transcription factors in prostate cancer. BMC Urology, 14, 17. https://doi.org/10.1186/1471-2490-14-17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Morgan, R., Pirard, P. M., Shears, L., Sohal, J., Pettengell, R., & Pandha, H. S. (2007). Antagonism of HOX/PBX dimer formation blocks the in vivo proliferation of melanoma. Cancer Research, 67(12), 5806–5813. https://doi.org/10.1158/0008-5472.CAN-06-4231.

    Article  PubMed  CAS  Google Scholar 

  133. Brock, A., Krause, S., Li, H., Kowalski, M., Goldberg, M. S., Collins, J. J., et al. (2014). Silencing HoxA1 by intraductal injection of siRNA lipidoid nanoparticles prevents mammary tumor progression in mice. Science Translational Medicine, 6(217), 217ra212. https://doi.org/10.1126/scitranslmed.3007048.

    Article  CAS  Google Scholar 

  134. Su, M., Alonso, S., Jones, J. W., Yu, J., Kane, M. A., Jones, R. J., & Ghiaur, G. (2015). All-trans retinoic acid activity in acute myeloid leukemia: role of cytochrome P450 enzyme expression by the microenvironment. PLoS One, 10(6), e0127790. https://doi.org/10.1371/journal.pone.0127790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Wang, Z. Y., & Chen, Z. (2008). Acute promyelocytic leukemia: from highly fatal to highly curable. Blood, 111(5), 2505–2515. https://doi.org/10.1182/blood-2007-07-102798.

    Article  PubMed  CAS  Google Scholar 

  136. Breitman, T. R., Chen, Z. X., & Takahashi, N. (1994). Potential applications of cytodifferentiation therapy in hematologic malignancies. Seminars in Hematology, 31(4 Suppl 5), 18–25.

    PubMed  CAS  Google Scholar 

  137. di Masi, A., Leboffe, L., De Marinis, E., Pagano, F., Cicconi, L., Rochette-Egly, C., et al. (2015). Retinoic acid receptors: from molecular mechanisms to cancer therapy. Molecular Aspects of Medicine, 41, 1–115. https://doi.org/10.1016/j.mam.2014.12.003.

    Article  PubMed  CAS  Google Scholar 

  138. Connolly, R. M., Nguyen, N. K., & Sukumar, S. (2013). Molecular pathways: current role and future directions of the retinoic acid pathway in cancer prevention and treatment. Clinical Cancer Research, 19(7), 1651–1659. https://doi.org/10.1158/1078-0432.CCR-12-3175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Shen, D., Yu, X., Wu, Y., Chen, Y., Li, G., Cheng, F., & Xia, L. (2018). Emerging roles of bexarotene in the prevention, treatment and anti-drug resistance of cancers. Expert Review of Anticancer Therapy, 18(5), 487–499. https://doi.org/10.1080/14737140.2018.1449648.

    Article  PubMed  CAS  Google Scholar 

  140. Zito, G., Naselli, F., Saieva, L., Raimondo, S., Calabrese, G., Guzzardo, C., Forte, S., Rolfo, C., Parenti, R., & Alessandro, R. (2017). Retinoic acid affects lung adenocarcinoma growth by inducing differentiation via GATA6 activation and EGFR and Wnt inhibition. Scientific Reports, 7(1), 4770. https://doi.org/10.1038/s41598-017-05047-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Qin, X. Y., Suzuki, H., Honda, M., Okada, H., Kaneko, S., Inoue, I., Ebisui, E., Hashimoto, K., Carninci, P., Kanki, K., Tatsukawa, H., Ishibashi, N., Masaki, T., Matsuura, T., Kagechika, H., Toriguchi, K., Hatano, E., Shirakami, Y., Shiota, G., Shimizu, M., Moriwaki, H., & Kojima, S. (2018). Prevention of hepatocellular carcinoma by targeting MYCN-positive liver cancer stem cells with acyclic retinoid. Proceedings of the National Academy of Sciences of the United States of America, 115(19), 4969–4974. https://doi.org/10.1073/pnas.1802279115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Merino, V. F., Nguyen, N., Jin, K., Sadik, H., Cho, S., Korangath, P., Han, L., Foster, Y. M. N., Zhou, X. C., Zhang, Z., Connolly, R. M., Stearns, V., Ali, S. Z., Adams, C., Chen, Q., Pan, D., Huso, D. L., Ordentlich, P., Brodie, A., & Sukumar, S. (2016). Combined treatment with epigenetic, differentiating, and chemotherapeutic agents cooperatively targets tumor-initiating cells in triple-negative breast cancer. Cancer Research, 76(7), 2013–2024. https://doi.org/10.1158/0008-5472.CAN-15-1619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Nolte, C., De Kumar, B., & Krumlauf, R. (2019). Hox genes: Downstream “effectors” of retinoic acid signaling in vertebrate embryogenesis. Genesis, 57(7-8), e23306. https://doi.org/10.1002/dvg.23306.

    Article  PubMed  Google Scholar 

  144. Dobrotkova, V., Chlapek, P., Mazanek, P., Sterba, J., & Veselska, R. (2018). Traffic lights for retinoids in oncology: molecular markers of retinoid resistance and sensitivity and their use in the management of cancer differentiation therapy. BMC Cancer, 18(1), 1059. https://doi.org/10.1186/s12885-018-4966-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Sirchia, S. M., Ferguson, A. T., Sironi, E., Subramanyan, S., Orlandi, R., Sukumar, S., & Sacchi, N. (2000). Evidence of epigenetic changes affecting the chromatin state of the retinoic acid receptor beta2 promoter in breast cancer cells. Oncogene, 19(12), 1556–1563. https://doi.org/10.1038/sj.onc.1203456.

    Article  PubMed  CAS  Google Scholar 

  146. Sirchia, S. M., Ren, M., Pili, R., Sironi, E., Somenzi, G., Ghidoni, R., Toma, S., Nicolò, G., & Sacchi, N. (2002). Endogenous reactivation of the RARbeta2 tumor suppressor gene epigenetically silenced in breast cancer. Cancer Research, 62(9), 2455–2461.

    PubMed  CAS  Google Scholar 

  147. Altucci, L., & Minucci, S. (2009). Epigenetic therapies in haematological malignancies: searching for true targets. European Journal of Cancer, 45(7), 1137–1145. https://doi.org/10.1016/j.ejca.2009.03.001.

    Article  PubMed  CAS  Google Scholar 

  148. Grishina, O., Schmoor, C., Dohner, K., Hackanson, B., Lubrich, B., May, A. M., et al. (2015). DECIDER: prospective randomized multicenter phase II trial of low-dose decitabine (DAC) administered alone or in combination with the histone deacetylase inhibitor valproic acid (VPA) and all-trans retinoic acid (ATRA) in patients >60 years with acute myeloid leukemia who are ineligible for induction chemotherapy. BMC Cancer, 15, 430. https://doi.org/10.1186/s12885-015-1432-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Sun, M., Song, C. X., Huang, H., Frankenberger, C. A., Sankarasharma, D., Gomes, S., Chen, P., Chen, J., Chada, K. K., He, C., & Rosner, M. R. (2013). HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 9920–9925. https://doi.org/10.1073/pnas.1305172110.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Fulcher, L. J., & Sapkota, G. P. (2020). Mitotic kinase anchoring proteins: the navigators of cell division. Cell Cycle, 19(5), 505–524. https://doi.org/10.1080/15384101.2020.1728014.

    Article  PubMed  CAS  Google Scholar 

  151. Meulenbeld, H. J., Bleuse, J. P., Vinci, E. M., Raymond, E., Vitali, G., Santoro, A., Dogliotti L., Berardi R., Cappuzzo F., Tagawa S. T., Sternberg C. N., Jannuzzo M. G., Mariani M., Petroccione A., de Wit R. (2013). Randomized phase II study of danusertib in patients with metastatic castration-resistant prostate cancer after docetaxel failure. BJU International, 111(1), 44-52, doi:https://doi.org/10.1111/j.1464-410X.2012.11404.x.

  152. Castro-Gamero, A. M., Pezuk, J. A., Brassesco, M. S., & Tone, L. G. (2018). G2/M inhibitors as pharmacotherapeutic opportunities for glioblastoma: the old, the new, and the future. Cancer Biology & Medicine, 15(4), 354–374. https://doi.org/10.20892/j.issn.2095-3941.2018.0030.

    Article  CAS  Google Scholar 

  153. Falchook, G. S., Bastida, C. C., & Kurzrock, R. (2015). Aurora Kinase Inhibitors in Oncology Clinical Trials: Current State of the Progress. Seminars in Oncology, 42(6), 832–848. https://doi.org/10.1053/j.seminoncol.2015.09.022.

    Article  PubMed  CAS  Google Scholar 

  154. Vo, B. T., Li, C., Morgan, M. A., Theurillat, I., Finkelstein, D., Wright, S., Hyle, J., Smith, S. M. C., Fan, Y., Wang, Y. D., Wu, G., Orr, B. A., Northcott, P. A., Shilatifard, A., Sherr, C. J., & Roussel, M. F. (2017). Inactivation of Ezh2 upregulates Gfi1 and drives aggressive Myc-driven group 3 medulloblastoma. Cell Reports, 18(12), 2907–2917. https://doi.org/10.1016/j.celrep.2017.02.073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Ferrando, A. A., Armstrong, S. A., Neuberg, D. S., Sallan, S. E., Silverman, L. B., Korsmeyer, S. J., & Look, A. T. (2003). Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood, 102(1), 262–268. https://doi.org/10.1182/blood-2002-10-3221.

    Article  PubMed  CAS  Google Scholar 

  156. De Kumar, B., Parker, H. J., Parrish, M. E., Lange, J. J., Slaughter, B. D., Unruh, J. R., et al. (2017). Dynamic regulation of Nanog and stem cell-signaling pathways by Hoxa1 during early neuro-ectodermal differentiation of ES cells. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 5838–5845. https://doi.org/10.1073/pnas.1610612114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Cillo, C., Schiavo, G., Cantile, M., Bihl, M. P., Sorrentino, P., Carafa, V., D' Armiento, M., Roncalli, M., Sansano, S., Vecchione, R., Tornillo, L., Mori, L., de Libero, G., Zucman-Rossi, J., & Terracciano, L. (2011). The HOX gene network in hepatocellular carcinoma. International Journal of Cancer, 129(11), 2577–2587. https://doi.org/10.1002/ijc.25941.

    Article  PubMed  CAS  Google Scholar 

  158. Zhong, X., Prinz, A., Steger, J., Garcia-Cuellar, M. P., Radsak, M., Bentaher, A., & Slany, R. K. (2018). HoxA9 transforms murine myeloid cells by a feedback loop driving expression of key oncogenes and cell cycle control genes. Blood Advances, 2(22), 3137–3148. https://doi.org/10.1182/bloodadvances.2018025866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Whitfield, J. R., Beaulieu, M. E., & Soucek, L. (2017). Strategies to Inhibit Myc and Their Clinical Applicability. Frontiers in Cell and Development Biology, 5, 10. https://doi.org/10.3389/fcell.2017.00010.

    Article  Google Scholar 

  160. Yang, Z., Yik, J. H., Chen, R., He, N., Jang, M. K., Ozato, K., et al. (2005). Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Molecular Cell, 19(4), 535–545. https://doi.org/10.1016/j.molcel.2005.06.029.

    Article  PubMed  CAS  Google Scholar 

  161. Wang, X. N., Su, X. X., Cheng, S. Q., Sun, Z. Y., Huang, Z. S., & Ou, T. M. (2019). MYC modulators in cancer: a patent review. Expert Opinion on Therapeutic Patents, 29(5), 353–367. https://doi.org/10.1080/13543776.2019.1612878.

    Article  PubMed  CAS  Google Scholar 

  162. Struntz, N. B., Chen, A., Deutzmann, A., Wilson, R. M., Stefan, E., Evans, H. L., Ramirez, M. A., Liang, T., Caballero, F., Wildschut, M. H. E., Neel, D. V., Freeman, D. B., Pop, M. S., McConkey, M., Muller, S., Curtin, B. H., Tseng, H., Frombach, K. R., Butty, V. L., Levine, S. S., Feau, C., Elmiligy, S., Hong, J. A., Lewis, T. A., Vetere, A., Clemons, P. A., Malstrom, S. E., Ebert, B. L., Lin, C. Y., Felsher, D. W., & Koehler, A. N. (2019). Stabilization of the Max homodimer with a small molecule attenuates Myc-driven transcription. Cell Chemical Biology, 26(5), 711–723 e714. https://doi.org/10.1016/j.chembiol.2019.02.009.

    Article  PubMed  CAS  Google Scholar 

  163. Beaulieu, M. E., Jauset, T., Masso-Valles, D., Martinez-Martin, S., Rahl, P., Maltais, L., et al. (2019). Intrinsic cell-penetrating activity propels Omomyc from proof of concept to viable anti-MYC therapy. Science Translational Medicine, 11(484), eaar5012. https://doi.org/10.1126/scitranslmed.aar5012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Rezsohazy, R. (2014). Non-transcriptional interactions of Hox proteins: inventory, facts, and future directions. Developmental Dynamics, 243(1), 117–131. https://doi.org/10.1002/dvdy.24060.

    Article  PubMed  CAS  Google Scholar 

  165. Plaza, S., Prince, F., Adachi, Y., Punzo, C., Cribbs, D. L., & Gehring, W. J. (2008). Cross-regulatory protein-protein interactions between Hox and Pax transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13439–13444. https://doi.org/10.1073/pnas.0806106105.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Williams, T. M., Williams, M. E., & Innis, J. W. (2005). Range of HOX/TALE superclass associations and protein domain requirements for HOXA13:MEIS interaction. Developmental Biology, 277(2), 457–471. https://doi.org/10.1016/j.ydbio.2004.10.004.

    Article  PubMed  CAS  Google Scholar 

  167. Zappavigna, V., Sartori, D., & Mavilio, F. (1994). Specificity of HOX protein function depends on DNA-protein and protein-protein interactions, both mediated by the homeo domain. Genes & Development, 8(6), 732–744. https://doi.org/10.1101/gad.8.6.732.

    Article  CAS  Google Scholar 

  168. Guerra, S. L., Maertens, O., Kuzmickas, R., De Raedt, T., Adeyemi, R. O., Guild, C. J., et al. (2020). A deregulated HOX gene axis confers an epigenetic vulnerability in KRAS-mutant lung cancers. Cancer Cell, 37(5), 705–719 e706. https://doi.org/10.1016/j.ccell.2020.03.004.

    Article  PubMed  CAS  Google Scholar 

  169. Zhou, T., Fu, H., Dong, B., Dai, L., Yang, Y., Yan, W., & Shen, L. (2019). HOXB7 mediates cisplatin resistance in esophageal squamous cell carcinoma through involvement of DNA damage repair. Thorac Cancer. https://doi.org/10.1111/1759-7714.13142.

  170. Wu, X., Ellmann, S., Rubin, E., Gil, M., Jin, K., Han, L., Chen, H., Kwon, E. M., Guo, J., Ha, H. C., & Sukumar, S. (2012). ADP ribosylation by PARP-1 suppresses HOXB7 transcriptional activity. PLoS One, 7(7), e40644. https://doi.org/10.1371/journal.pone.0040644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Rubin, E., Wu, X., Zhu, T., Cheung, J. C., Chen, H., Lorincz, A., et al. (2007). A role for the HOXB7 homeodomain protein in DNA repair. Cancer Research, 67(4), 1527–1535. https://doi.org/10.1158/0008-5472.CAN-06-4283.

    Article  PubMed  CAS  Google Scholar 

  172. Bousquenaud, M., Fico, F., Solinas, G., Ruegg, C., & Santamaria-Martinez, A. (2018). Obesity promotes the expansion of metastasis-initiating cells in breast cancer. Breast Cancer Research, 20(1), 104. https://doi.org/10.1186/s13058-018-1029-4.

    Article  PubMed  CAS  Google Scholar 

Download references

Availability of data ad material

Open

Funding

Supported by the Rubenstein Family Funds, and the AVON Foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

The review was written by SS, reviewed and edited by JJ and PP. The figures were prepared by JJ and PP.

Corresponding author

Correspondence to Saraswati Sukumar.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jonkers, J., Pai, P. & Sukumar, S. Multiple roles of HOX proteins in Metastasis: Let me count the ways. Cancer Metastasis Rev 39, 661–679 (2020). https://doi.org/10.1007/s10555-020-09908-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09908-4

Keywords

Navigation