Skip to main content

Advertisement

Log in

BRMS1: a multifunctional signaling molecule in metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Despite high mortality rates, molecular understanding of metastasis remains limited. It can be regulated by both pro- and anti-metastasis genes. The metastasis suppressor, breast cancer metastasis suppressor 1 (BRMS1), has been positively correlated with patient outcomes, but molecular functions are still being characterized. BRMS1 has been implicated in focal adhesion kinase (FAK), epidermal growth factor receptor (EGFR), and NF-κB signaling pathways. We review evidence that BRMS1 regulates these vast signaling pathways through chromatin remodeling as a member of mSin3 histone deacetylase complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AA:

Amino acid

BRMS1:

Breast cancer metastasis suppressor 1

cAMP:

Cyclic AMP

CDK2:

Cyclin-dependent kinase 2

CK2α:

Casein kinase 2 alpha

CoREST:

Co-repressor of REST

CTC:

Circulating tumor cells

Cx26:

Connexin 26

Cx43:

Connexin 43

ECM:

Extracellular microenvironment

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-to-mesenchymal transition

FAK:

Focal adhesion kinase

FGF:

Fibroblast growth factor

GFs:

Growth factors

GIJC:

Gap junction intercellular communication

GO:

Gene Ontology

HCC:

Hepatocellular carcinoma

HDAC1:

Histone deacetylase 1

HDAC2:

Histone deacetylase 2

MHC:

Major histocompatibility complex

miRNA:

microRNA

MMP:

Matrix metalloproteinases

mSin3:

Mammalian switch-independent 3

nCOR:

Nuclear receptor corepressor

NLS:

Nuclear localization signal

NSCLC:

Non-small cell lung cancer

NuRD:

Nucleosome remodeling and deacetylase

OPN:

Osteopontin

PKA:

Protein kinase A

PtdIns(4,5)P2 :

Phosphatidylinositol 4,5-bisphosphate

ROS:

Reactive oxygen species

TGFα:

Transforming growth factor alpha

TGF-β:

Transforming growth factor beta

TME:

Tumor microenvironment

uPA:

Urokinase plasminogen activator

UTR:

Untranslated region

References

  1. Welch, D. R., & Hurst, D. R. (2019). Defining the hallmarks of metastasis. Cancer Research, 79(12), 3011–3027.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2(8), 563–572.

    CAS  PubMed  Google Scholar 

  3. Liu, W., et al. (2014). Microenvironmental influences on metastasis suppressor expression and function during a metastatic cell’s journey. Cancer Microenvironment, 7(3), 117–131.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Seraj, M. J., et al. (2000). Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Research, 60(11), 2764–2769.

    CAS  PubMed  Google Scholar 

  5. Phillips, K. K., et al. (1996). Suppression of MDA-MB-435 breast carcinoma cell metastasis following the introduction of human chromosome 11. Cancer Research, 56(6), 1222–1227.

    CAS  PubMed  Google Scholar 

  6. Vaidya, K. S., et al. (2008). Breast cancer metastasis suppressor-1 differentially modulates growth factor signaling. The Journal of Biological Chemistry, 283(42), 28354–28360.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shevde, L. A., et al. (2002). Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1. Experimental Cell Research, 273(2), 229–239.

    CAS  PubMed  Google Scholar 

  8. Smith, P. W., et al. (2009). Breast cancer metastasis suppressor 1 (BRMS1) suppresses metastasis and correlates with improved patient survival in non-small cell lung cancer. Cancer Letters, 276(2), 196–203.

    CAS  PubMed  Google Scholar 

  9. Zhang, Z., et al. (2006). Reduced expression of the breast cancer metastasis suppressor 1 mRNA is correlated with poor progress in breast cancer. Clinical Cancer Research, 12(21), 6410–6414.

    CAS  PubMed  Google Scholar 

  10. Bucciarelli, P. R., et al. (2018). BRMS1 expression in surgically resected lung adenocarcinoma predicts future metastases and is associated with a poor prognosis. Journal of Thoracic Oncology 13(1), 73–84.

  11. Li, J., et al. (2011). Prognostic significance of BRMS1 expression in human melanoma and its role in tumor angiogenesis. Oncogene, 30(8), 896–906.

    PubMed  Google Scholar 

  12. Meehan, W. J., et al. (2004). Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. The Journal of Biological Chemistry, 279(2), 1562–1569.

    CAS  PubMed  Google Scholar 

  13. Sharma, S., Kelly, T. K., & Jones, P. A. (2010). Epigenetics in cancer. Carcinogenesis, 31(1), 27–36.

    CAS  PubMed  Google Scholar 

  14. Flavahan, W. A., Gaskell, E., & Bernstein, B. E. (2017). Epigenetic plasticity and the hallmarks of cancer. Science, 357(6348).

  15. Barneda-Zahonero, B., & Parra, M. (2012). Histone deacetylases and cancer. Molecular Oncology, 6(6), 579–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Trosko, J. E., & Ruch, R. J. (1998). Cell-cell communication in carcinogenesis. Frontiers in Bioscience, 3, d208–d236.

    CAS  PubMed  Google Scholar 

  17. Saunders, M. M., et al. (2001). Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Research, 61(5), 1765–1767.

    CAS  PubMed  Google Scholar 

  18. Yang, Y. L., et al. (2013). Effect and mechanism of the metastasis suppressor gene BRMS1 on the migration of breast cancer cells. International Journal of Clinical and Experimental Medicine, 6(10), 908–916.

    PubMed  PubMed Central  Google Scholar 

  19. DeWald, D. B., et al. (2005). Metastasis suppression by breast cancer metastasis suppressor 1 involves reduction of phosphoinositide signaling in MDA-MB-435 breast carcinoma cells. Cancer Research, 65(3), 713–717.

    CAS  PubMed  Google Scholar 

  20. Aasen, T., et al. (2016). Gap junctions and cancer: Communicating for 50 years. Nature Reviews. Cancer, 16(12), 775–788.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Su, V., & Lau, A. F. (2014). Connexins: Mechanisms regulating protein levels and intercellular communication. FEBS Letters, 588(8), 1212–1220.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamasaki, H., et al. (1995). Intercellular communication and carcinogenesis. Mutation Research: Fundamental and Molecular Mechanisms of Mutagenesis, 333(1–2), 181–188.

    CAS  PubMed  Google Scholar 

  23. Fajardo, A. M., Piazza, G. A., & Tinsley, H. N. (2014). The role of cyclic nucleotide signaling pathways in cancer: Targets for prevention and treatment. Cancers (Basel), 6(1), 436–458.

    Google Scholar 

  24. Pattabiraman, D. R., et al. (2016). Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science, 351(6277), aad3680.

    PubMed  PubMed Central  Google Scholar 

  25. Witsch, E., Sela, M., & Yarden, Y. (2010). Roles for growth factors in cancer progression. Physiology (Bethesda), 25(2), 85–101.

    CAS  Google Scholar 

  26. Aaronson, S. A. (1991). Growth factors and cancer. Science, 254(5035), 1146–1153.

    CAS  PubMed  Google Scholar 

  27. Sasaki, T., Hiroki, K., & Yamashita, Y. (2013). The role of epidermal growth factor receptor in cancer metastasis and microenvironment. BioMed Research International, 2013, 546318.

    PubMed  PubMed Central  Google Scholar 

  28. Champine, P. J., et al. (2007). Microarray analysis reveals potential mechanisms of BRMS1-mediated metastasis suppression. Clinical & Experimental Metastasis, 24(7), 551–565.

    CAS  Google Scholar 

  29. Janssen, L. M. E., et al. (2017). The immune system in cancer metastasis: Friend or foe? Journal for Immunotherapy of Cancer, 5(1), 79.

    PubMed  PubMed Central  Google Scholar 

  30. Gonzalez, H., Hagerling, C., & Werb, Z. (2018). Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes & Development, 32(19–20), 1267–1284.

    CAS  Google Scholar 

  31. Pandya, P. H., et al. (2016). The immune system in Cancer pathogenesis: Potential therapeutic approaches. Journal of Immunology Research, 2016, 4273943.

    PubMed  PubMed Central  Google Scholar 

  32. Garrido, F., et al. (2016). The urgent need to recover MHC class I in cancers for effective immunotherapy. Current Opinion in Immunology, 39, 44–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Marty Pyke, R., et al. (2018). Evolutionary pressure against MHC class II binding cancer mutations. Cell, 175(2), 416–428 e13.

    PubMed  Google Scholar 

  34. Zhang, S., Lin, Q. D., & Di, W. (2006). Suppression of human ovarian carcinoma metastasis by the metastasis-suppressor gene, BRMS1. International Journal of Gynecological Cancer, 16(2), 522–531.

    PubMed  Google Scholar 

  35. Mei, P., et al. (2014). BRMS1 suppresses glioma progression by regulating invasion, migration and adhesion of glioma cells. PLoS One, 9(5), e98544.

    PubMed  PubMed Central  Google Scholar 

  36. Khotskaya, Y. B., et al. (2014). Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix. Molecular Carcinogenesis, 53(12), 1011–1026.

    CAS  PubMed  Google Scholar 

  37. Mellman, I., & Yarden, Y. (2013). Endocytosis and cancer. Cold Spring Harbor Perspectives in Biology, 5(12), a016949.

    PubMed  PubMed Central  Google Scholar 

  38. Cicek, M., et al. (2005). Breast cancer metastasis suppressor 1 inhibits gene expression by targeting nuclear factor-kB activity. Cancer Research, 65(9), 3586–3595.

    CAS  PubMed  Google Scholar 

  39. Samant, R. S., et al. (2007). Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NF-kappaB activation. Molecular Cancer, 6, 6.

    PubMed  PubMed Central  Google Scholar 

  40. Hedley, B. D., et al. (2008). Downregulation of osteopontin contributes to metastasis suppression by breast cancer metastasis suppressor 1. International Journal of Cancer, 123(3), 526–534.

    CAS  PubMed  Google Scholar 

  41. Moynagh, P. N. (2005). The NF-kappaB pathway. Journal of Cell Science, 118(Pt 20), 4589–4592.

    CAS  PubMed  Google Scholar 

  42. Sun, S. C. (2011). Non-canonical NF-kappaB signaling pathway. Cell Research, 21(1), 71–85.

    CAS  PubMed  Google Scholar 

  43. Karin, M., & Greten, F. R. (2005). NF-kappaB: Linking inflammation and immunity to cancer development and progression. Nature Reviews. Immunology, 5(10), 749–759.

    CAS  PubMed  Google Scholar 

  44. Taniguchi, K., & Karin, M. (2018). NF-kappaB, inflammation, immunity and cancer: Coming of age. Nature Reviews. Immunology, 18(5), 309–324.

    CAS  PubMed  Google Scholar 

  45. Gilmore, T. D. (2006). Introduction to NF-kB: Players, pathways, perspectives. Oncogene, 25(51), 6680–6684.

    CAS  PubMed  Google Scholar 

  46. Andreasen, P. A., et al. (1997). The urokinase-type plasminogen activator system in cancer metastasis: A review. International Journal of Cancer, 72(1), 1–22.

    CAS  PubMed  Google Scholar 

  47. Cicek, M., et al. (2009). BRMS1 contributes to the negative regulation of uPA gene expression through recruitment of HDAC1 to the NF-kappaB binding site of the uPA promoter. CEM, 26(3), 229–237.

    CAS  Google Scholar 

  48. Liu, Y., et al. (2015). Loss of BRMS1 promotes a mesenchymal phenotype through NF-kappaB-dependent regulation of Twist1. Molecular and Cellular Biology, 35(1), 303–317.

    PubMed  Google Scholar 

  49. Zhao, H., et al. (2018). The role of osteopontin in the progression of solid organ tumour. Cell Death & Disease, 9(3), 356.

    Google Scholar 

  50. Wu, J., et al. (2013). Cloning and characterization of a novel human BRMS1 transcript variant in hepatocellular carcinoma cells. Cancer Letters, 337(2), 266–275.

    CAS  PubMed  Google Scholar 

  51. Toruner, M., et al. (2006). Antianoikis effect of nuclear factor-kappaB through up-regulated expression of osteoprotegerin, BCL-2, and IAP-1. The Journal of Biological Chemistry, 281(13), 8686–8696.

    CAS  PubMed  Google Scholar 

  52. Jiang, Y. X., et al. (2001). Inhibition of anchorage-independent growth and lung metastasis of A549 lung carcinoma cells by IkappaBb. Oncogene, 20(18), 2254–2263.

    CAS  PubMed  Google Scholar 

  53. Liu, Y., et al. (2013). BRMS1 suppresses lung cancer metastases through an E3 ligase function on histone acetyltransferase p300. Cancer Research, 73(4), 1308–1317.

    CAS  PubMed  Google Scholar 

  54. Mukherjee, S. P., et al. (2013). Analysis of the RelA:CBP/p300 interaction reveals its involvement in NF-kappaB-driven transcription. PLoS Biology, 11(9), e1001647.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hurst, D. R., Edmonds, M. D., & Welch, D. R. (2009). Metastamir: The field of metastasis-regulatory microRNA is spreading. Cancer Research, 69(19), 7495–7498.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ma, X., et al. (2011). MicroRNAs in NF-kappaB signaling. Journal of Molecular Cell Biology, 3(3), 159–166.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, J., et al. (2020). miR-146a promoted breast cancer proliferation and invasion by regulating NM23-H1. Journal of Biochemistry, 167(1), 41–48.

    CAS  PubMed  Google Scholar 

  58. Ouyang, H., et al. (2014). microRNA-10b enhances pancreatic cancer cell invasion by suppressing TIP30 expression and promoting EGF and TGF-beta actions. Oncogene, 33(38), 4664–4674.

    CAS  PubMed  Google Scholar 

  59. Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.

    CAS  PubMed  Google Scholar 

  60. Edmonds, M. D., et al. (2009). Breast cancer metastasis suppressor 1 (BRMS1) coordinately regulates metastasis-associated microRNA expression. IJC, 125(8), 1778–1785.

    CAS  Google Scholar 

  61. Lorente, D., et al. (2018). Circulating tumour cell increase as a biomarker of disease progression in metastatic castration-resistant prostate cancer patients with low baseline CTC counts. Annals of Oncology, 29(7), 1554–1560.

    CAS  PubMed  Google Scholar 

  62. Farah, H., et al. (2014). Can providing feedback on driving behavior and training on parental vigilant care affect male teen drivers and their parents? Accident; Analysis and Prevention, 69, 62–70.

    PubMed  Google Scholar 

  63. Bosch, B., et al. (2003). Perioperative detection of disseminated tumour cells is an independent prognostic factor in patients with colorectal cancer. The British Journal of Surgery, 90(7), 882–888.

    CAS  PubMed  Google Scholar 

  64. Trapp, E., et al. (2019). Presence of circulating tumor cells in high-risk early breast cancer during follow-up and prognosis. Journal of the National Cancer Institute, 111(4), 380–387.

    PubMed  Google Scholar 

  65. Kang, Y. T., et al. (2018). Cytopathological study of the circulating tumor cells filtered from the cancer patients’ blood using hydrogel-based cell block formation. Scientific Reports, 8(1), 15218.

    PubMed  PubMed Central  Google Scholar 

  66. Nagrath, S., et al. (2007). Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 450(7173), 1235–1239.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gilmore, A. P. (2005). Anoikis. Cell Death and Differentiation, 12(Suppl 2), 1473–1477.

    CAS  PubMed  Google Scholar 

  68. Zhao, X., & Guan, J. L. (2011). Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Advanced Drug Delivery Reviews, 63(8), 610–615.

    CAS  PubMed  Google Scholar 

  69. Weis, S. M., & Cheresh, D. A. (2011). alphaV integrins in angiogenesis and cancer. Cold Spring Harbor Perspectives in Medicine, 1(1), a006478.

    PubMed  PubMed Central  Google Scholar 

  70. Howe, G. A., & Addison, C. L. (2012). beta1 integrin: An emerging player in the modulation of tumorigenesis and response to therapy. Cell Adhesion & Migration, 6(2), 71–77.

    Google Scholar 

  71. Phadke, P. A., et al. (2008). BRMS1 suppresses breast cancer experimental metastasis to multiple organs by inhibiting several steps of the metastatic process. The American Journal of Pathology, 172(3), 809–817.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Fan, Y., et al. (2008). Regulation of programmed cell death by NF-kappaB and its role in tumorigenesis and therapy. Advances in Experimental Medicine and Biology, 615, 223–250.

    CAS  PubMed  Google Scholar 

  73. Massague, J., & Obenauf, A. C. (2016). Metastatic colonization by circulating tumour cells. Nature, 529(7586), 298–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shibue, T., & Weinberg, R. A. (2011). Metastatic colonization: Settlement, adaptation and propagation of tumor cells in a foreign tissue environment. Seminars in Cancer Biology, 21(2), 99–106.

    CAS  PubMed  Google Scholar 

  75. Harper, K. L., et al. (2016). Mechanism of early dissemination and metastasis in Her2(+) mammary cancer. Nature 540(7634), 588-592.

  76. Li, E. (2002). Chromatin modification and epigenetic reprogramming in mammalian development. Nature Reviews. Genetics, 3(9), 662–673.

    CAS  PubMed  Google Scholar 

  77. Varshavsky, A. (2005). Regulated protein degradation. Trends in Biochemical Sciences, 30(6), 283–286.

  78. Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nature Genetics, 33(Suppl), 245–254.

    CAS  PubMed  Google Scholar 

  79. Lombardi, G., et al. (2006). High level of messenger RNA for BRMS1 in primary breast carcinomas is associated with poor prognosis. International Journal of Cancer, 120(6), 1169–1178.

    Google Scholar 

  80. Hurst, D. R., & Welch, D. R. (2011). Metastasis suppressor genes at the interface between the environment and tumor cell growth. International Review of Cell and Molecular Biology, 286, 107–180.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhao, M., Li, Z., & Qu, H. (2015). An evidence-based knowledgebase of metastasis suppressors to identify key pathways relevant to cancer metastasis. Scientific Reports, 5, 15478.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Metge, B. J., et al. (2008). Epigenetic silencing contributes to the loss of BRMS1 expression in breast cancer. Clinical & Experimental Metastasis, 25(7), 753–763.

    CAS  Google Scholar 

  83. Nagji, A. S., et al. (2010). BRMS1 transcriptional repression correlates with CpG island methylation and advanced pathological stage in non-small cell lung cancer. The Journal of Pathology, 221(2), 229–237.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Xing, W. J., et al. (2015). MRTF-A and STAT3 promote MDA-MB-231 cell migration via hypermethylating BRSM1. IUBMB Life, 67(3), 202–217.

    CAS  PubMed  Google Scholar 

  85. Hall, E. H., et al. (2014). Inhibition of breast cancer metastasis suppressor 1 promotes a mesenchymal phenotype in lung epithelial cells that express oncogenic K-RasV12 and loss of p53. PLoS One, 9(4), e95869.

    PubMed  PubMed Central  Google Scholar 

  86. Sun, X., et al. (2017). MicroRNA-423 enhances the invasiveness of hepatocellular carcinoma via regulation of BRMS1. American Journal of Translational Research, 9(12), 5576–5584.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin, J., et al. (2011). MicroRNA-423 promotes cell growth and regulates G(1)/S transition by targeting p21Cip1/Waf1 in hepatocellular carcinoma. Carcinogenesis, 32(11), 1641–1647.

    CAS  PubMed  Google Scholar 

  88. Roesley, S. N., et al. (2016). Cyclin-dependent kinase-mediated phosphorylation of breast cancer metastasis suppressor 1 (BRMS1) affects cell migration. Cell Cycle, 15(1), 137–151.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Cao, Y., et al. (2018). MicroRNA-125a-5p inhibits invasion and metastasis of gastric cancer cells by targeting BRMS1 expression. Oncology Letters, 15(4), 5119–5130.

    PubMed  PubMed Central  Google Scholar 

  90. Liang, Z., et al. (2019). MicroRNA125a5p controls the proliferation, apoptosis, migration and PTEN/MEK1/2/ERK1/2 signaling pathway in MCF7 breast cancer cells. Molecular Medicine Reports, 20(5), 4507–4514.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, G., et al. (2018). MicroRNA-3200-5p promotes osteosarcoma cell invasion via suppression of BRMS1. Molecules and Cells, 41(6), 523–531.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu, Y., et al. (2016). CK2alpha’ drives lung cancer metastasis by targeting BRMS1 nuclear export and degradation. Cancer Research, 76(9), 2675–2686.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hurst, D. R., et al. (2013). The C-terminal putative nuclear localization sequence of breast cancer metastasis suppressor 1, BRMS1, is necessary for metastasis suppression. PLoS One, 8(2), e55966.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hurst, D. R., & Welch, D. R. (2011). Unraveling the enigmatic complexities of BRMS1-mediated metastasis suppression. FEBS Letters, 585(20), 3185–3190.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hurst, D. R., Xie, Y., & Welch, D. R. (2009). The second predicted nuclear localization sequence of BRMS1 is required for metastasis suppression. Clinical & Experimental Metastasis, 26(7), 931–931.

    Google Scholar 

  96. Courey, A. J., et al. (1989). Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell, 59(5), 827–836.

    CAS  PubMed  Google Scholar 

  97. Truebestein, L., & Leonard, T. A. (2016). Coiled-coils: The long and short of it. Bioessays, 38(9), 903–916.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Landschulz, W. H., Johnson, P. F., & McKnight, S. L. (1988). The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins. Science, 240(4860), 1759–1764.

    CAS  PubMed  Google Scholar 

  99. Hurst, D. R. (2012). Metastasis suppression by BRMS1 associated with SIN3 chromatin remodeling complexes. Cancer Metastasis Reviews, 31(3–4), 641–651.

    CAS  PubMed  Google Scholar 

  100. Basta, J., & Rauchman, M. (2015). The nucleosome remodeling and deacetylase complex in development and disease. Translational Research, 165(1), 36–47.

    CAS  PubMed  Google Scholar 

  101. Laugesen, A., & Helin, K. (2014). Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell, 14(6), 735–751.

    CAS  Google Scholar 

  102. Kadamb, R., et al. (2013). Sin3: Insight into its transcription regulatory functions. European Journal of Cell Biology, 92(8–9), 237–246.

    CAS  PubMed  Google Scholar 

  103. Farias, E. F., et al. (2010). Interference with Sin3 function induces epigenetic reprogramming and differentiation in breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 107(26), 11811–11816.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Saunders, A., et al. (2017). The SIN3A/HDAC corepressor complex functionally cooperates with NANOG to promote pluripotency. Cell Reports, 18(7), 1713–1726.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Adams, M. K., et al. (2019). Differential complex formation via paralogs in the human Sin3 protein interaction network. BioRxiv, p. 830828. https://doi.org/10.1101/830828.

  106. Lewis, M. J., et al. (2016). SIN3A and SIN3B differentially regulate breast cancer metastasis. Oncotarget, 7(48), 78713–78725.

    PubMed  PubMed Central  Google Scholar 

  107. Clark, M. D., et al. (2015). Structural insights into the assembly of the histone deacetylase-associated Sin3L/Rpd3L corepressor complex. Proceedings of the National Academy of Sciences of the United States of America, 112(28), E3669–E3678.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Silveira, A. C., et al. (2009). Over-expression of the BRMS1 family member SUDS3 does not suppress metastasis of human cancer cells. Cancer Letters, 276(1), 32–37.

    CAS  PubMed  Google Scholar 

  109. Samant, R. S., et al. (2001). Identification and characterization of mouse homolog (Brms1) of the breast cancer metastasis suppressor BRMS1. PNAS, 42, 2808.

    Google Scholar 

  110. Cook, L. M., et al. (2012). Ubiquitous Brms1 expression is critical for mammary carcinoma metastasis suppression via promotion of apoptosis. CEM, 29(4), 315–325.

    CAS  Google Scholar 

  111. Hurst, D. R., et al. (2008). Alterations of BRMS1-ARID4A interaction modify gene expression but still suppress metastasis in human breast cancer cells. The Journal of Biological Chemistry, 283(12), 7438–7444.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Eckschlager, T., et al. (2017). Histone deacetylase inhibitors as anticancer drugs. International Journal of Molecular Sciences, 18(7).

  113. Szarc vel Szic, K., et al. (2014). Pharmacological levels of Withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells. PLoS One, 9(2), e87850.

    PubMed  PubMed Central  Google Scholar 

  114. Seraj, M. J., et al. (2001). The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines. Clinical & Experimental Metastasis, 18(6), 519–525.

    Google Scholar 

  115. Ponnusamy, S., et al. (2012). Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis. EMBO Molecular Medicine, 4(8), 761–775.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hedley, B. D., et al. (2008). BRMS1 suppresses breast cancer metastasis in multiple experimental models of metastasis by reducing solitary cell survival and inhibiting growth initiation. Clinical & Experimental Metastasis, 25(7), 727–740.

    CAS  Google Scholar 

  117. Qiu, R., et al. (2018). BRMS1 coordinates with LSD1 and suppresses breast cancer cell metastasis. American Journal of Cancer Research, 8(10), 2030–2045.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Xia, J., et al. (2017). DNA methylation modification of BRMS1 in triple-negative breast cancer and its correlation with tumor metastasis. Zhonghua Yi Xue Za Zhi, 97(44), 3483–3487.

    CAS  PubMed  Google Scholar 

  119. Kong, B., et al. (2015). Down-regulation of BRMS1 by DNA hypermethylation and its association with metastatic progression in triple-negative breast cancer. International Journal of Clinical and Experimental Pathology, 8(9), 11076–11083.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lin, L., et al. (2018). Breast cancer metastasis suppressor gene, breast cancer metastasis suppressor 1, may be associated with clinicopathological features of breast cancer. Journal of Cancer Research and Therapeutics, 14(Supplement), S368–S374.

    CAS  PubMed  Google Scholar 

  121. Lin, L. Z., et al. (2017). BRMS1 gene expression may be associated with clinico-pathological features of breast cancer. Bioscience Reports, 37(4), BSR20170672.

  122. Frolova, N., et al. (2009). A shift from nuclear to cytoplasmic breast Cancer metastasis suppressor 1 expression is associated with highly proliferative estrogen receptor-negative breast cancers. Tumor Biology, 30(3), 148–159.

    CAS  PubMed  Google Scholar 

  123. Hicks, D. G., et al. (2006). Loss of BRMS1 protein expression predicts reduced disease-free survival in hormone receptor negative and HER2 positive subsets of breast cancer. Clinical Cancer Research, 12(22), 6702–6708.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kelly, L. M., et al. (2005). Expression of the breast cancer metastasis suppressor gene, BRMS1, in human breast carcinoma: Lack of correlation with metastasis to axillary lymph nodes. Tumour Biology, 26(4), 213–216.

    CAS  PubMed  Google Scholar 

  125. Chimonidou, M., et al. (2011). DNA methylation of tumor suppressor and metastasis suppressor genes in circulating tumor cells. Clinical Chemistry, 57(8), 1169–1177.

    CAS  PubMed  Google Scholar 

  126. Chimonidou, M., et al. (2013). BRMS1 promoter methylation provides prognostic information in primary breast tumors. Molecular Cancer Research, 11(10), 1248–1257.

    CAS  PubMed  Google Scholar 

  127. Wang, Q., et al. (2015). Histone demethylase JARID1C promotes breast cancer metastasis cells via down regulating BRMS1 expression. Biochemical and Biophysical Research Communications, 464(2), 659–666.

    CAS  PubMed  Google Scholar 

  128. Panagopoulou, M., et al. (2017). Gene promoter methylation and protein expression of BRMS1 in uterine cervix in relation to high-risk human papilloma virus infection and cancer. Tumour Biology, 39(4), 1010428317697557.

    PubMed  Google Scholar 

  129. Yang, Z., Liu, F., & Yang, Z. L. (2016). BRMS1 and HPA as progression, clinical biological behaviors, and poor prognosis-related biomarkers for gallbladder adenocarcinoma. Applied Immunohistochemistry & Molecular Morphology, 24(4), 275–282.

    Google Scholar 

  130. Guo, X. L., et al. (2015). Effect of BRMS1 expression on proliferation, migration and adhesion of mouse forestomach carcinoma. Asian Pacific Journal of Tropical Medicine, 8(9), 724–730.

    CAS  PubMed  Google Scholar 

  131. Pan, J., et al. (2019). Prediction of platinum-resistance patients of gastric cancer using bioinformatics. Journal of Cellular Biochemistry, 120(8), 13478–13486.

    CAS  PubMed  Google Scholar 

  132. Li, X., et al. (2008). Expression and clinical significance of breast cancer metastasis suppressor 1 mRNA in supraglottic laryngeal carcinoma. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi, 22(6), 241–244.

    PubMed  Google Scholar 

  133. Cui, R. X., et al. (2012). Low BRMS1 expression promotes nasopharyngeal carcinoma metastasis in vitro and in vivo and is associated with poor patient survival. BMC Cancer, 12(1), 376.

    CAS  PubMed  Google Scholar 

  134. Balgkouranidou, I., et al. (2014). Breast cancer metastasis suppressor-1 promoter methylation in cell-free DNA provides prognostic information in non-small cell lung cancer. British Journal of Cancer, 110(8), 2054–2062.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Slipicevic, A., et al. (2012). Cytoplasmic BRMS1 expression in malignant melanoma is associated with increased disease-free survival. BMC Cancer, 12, 73.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Ventura, B. V., et al. (2014). Expression of the metastasis suppressor BRMS1 in uveal melanoma. Ecancermedicalscience, 8, 410.

    PubMed  PubMed Central  Google Scholar 

  137. Ohta, S., et al. (2005). Downregulation of metastasis suppressor genes in malignant pheochromocytoma. International Journal of Cancer, 114(1), 139–143.

    CAS  PubMed  Google Scholar 

  138. Zhang, H. M., et al. (2017). Breast cancer metastasis suppressor 1 (BRMS1) suppresses prostate cancer progression by inducing apoptosis and regulating invasion. European Review for Medical and Pharmacological Sciences, 21(1), 68–75.

    PubMed  Google Scholar 

  139. Zhang, Y., et al. (2014). Effect of BRMS1 on tumorigenicity and metastasis of human rectal cancer. Cell Biochemistry and Biophysics, 70(1), 505–509.

    CAS  PubMed  Google Scholar 

  140. Wu, Y., et al. (2019). BRMS1 downregulation is a poor prognostic biomarker in anaplastic thyroid carcinoma patients. OncoTargets and Therapy, 12, 6937–6945.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Work done in the authors’ lab was funded primarily by Susan G. Komen for the Cure (SAC110037), METAvivor Research and Support, Inc., the National Foundation for Cancer Research; and USPHS-National Institutes of Health grants (CA87728; CA134981). Additional funding support was provided by National Cancer Institute P30-CA168524 (DRW) and National Institutes of Health GM103418 (DRW). We apologize to any authors whose work was omitted due to article guidelines. We also thank Christa Manton, Michael Washburn, Thuc Ly, Adam Scheid, and Thomas Beadnell for helpful discussions, careful reading, and editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny R. Welch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This review summarizes only published results from clinical studies and animal studies. To the best of the authors' knowledge, all studies were performed in compliance with all applicable laws, policies, guidelines and ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, R.C., Welch, D.R. BRMS1: a multifunctional signaling molecule in metastasis. Cancer Metastasis Rev 39, 755–768 (2020). https://doi.org/10.1007/s10555-020-09871-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09871-0

Keywords

Navigation