Skip to main content

Advertisement

Log in

Tackling tumor heterogeneity and phenotypic plasticity in cancer precision medicine: our experience and a literature review

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The predominant cause of cancer mortality is metastasis. The major impediment to cancer cure is the intrinsic or acquired resistance to currently available therapies. Cancer is heterogeneous at the genetic, epigenetic, and metabolic levels. And, while a molecular-targeted drug may be pathway-precise, it can still fail to achieve wholesome cancer-precise toxicity. In the current review, we discuss the strategic differences between targeting the strengths of cancer cells in phenotypic plasticity and heterogeneity and targeting shared vulnerabilities of cancer cells such as the compromised integrity of membranous organelles. To better recapitulate subpopulations of cancer cells in different phenotypic and functional states, we developed a schematic combination of 2-dimensional culture (2D), 3-dimmensional culture in collagen I (3D), and mammosphere culture for stem cells (mammosphere), designated as Scheme 2D/3D/mammosphere. We investigated how the tumor suppressor maspin may limit carcinoma cell plasticity and affect their context-dependent response to drugs of different mechanisms including docetaxel, histone deacetylase (HDAC) inhibitor MS-275, and ionophore antibiotic salinomycin. We showed that tumor cell phenotypic plasticity is not an exclusive attribute to cancer stem cells. Nonetheless, three subpopulations of prostate cancer cells, enriched through Scheme 2D/3D/mammosphere, show qualitatively different drug responses. Interestingly, salinomycin was the only drug that effectively killed all three cancer cell subpopulations, irrespective of their capacity of stemness. Further, Scheme 2D/3D/mammosphere may be a useful model to accelerate the screening for curative cancer drugs while avoiding costly characterization of compounds that may have only selective toxicity to some, but not all, cancer cell subpopulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA: a Cancer Journal for Clinicians, 68(1), 7–30. https://doi.org/10.3322/caac.21442.

    Article  Google Scholar 

  2. Global Burden of Disease Cancer, Fitzmaurice, C., Akinyemiju, T. F., Al Lami, F. H., Alam, T., Alizadeh-Navaei, R., et al. (2018). Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncology. https://doi.org/10.1001/jamaoncol.2018.2706.

  3. Holohan, C., Van Schaeybroeck, S., Longley, D. B., & Johnston, P. G. (2013). Cancer drug resistance: an evolving paradigm. Nature Reviews Cancer, 13(10), 714–726. https://doi.org/10.1038/nrc3599.

    Article  CAS  PubMed  Google Scholar 

  4. Maugeri-Sacca, M., Vigneri, P., & De Maria, R. (2011). Cancer stem cells and chemosensitivity. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 17(15), 4942–4947. https://doi.org/10.1158/1078-0432.CCR-10-2538.

    Article  CAS  Google Scholar 

  5. McMillin, D. W., Negri, J. M., & Mitsiades, C. S. (2013). The role of tumor-stromal interactions in modifying drug response: challenges and opportunities. Nature Reviews. Drug Discovery, 12(3), 217–228. https://doi.org/10.1038/nrd3870.

    Article  CAS  PubMed  Google Scholar 

  6. Maertens, O., McCurrach, M. E., Braun, B. S., De Raedt, T., Epstein, I., Huang, T. Q., et al. (2017). A collaborative model for accelerating the discovery and translation of cancer therapies. Cancer Research, 77(21), 5706–5711. https://doi.org/10.1158/0008-5472.CAN-17-1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Plowright, A. T., Ottmann, C., Arkin, M., Auberson, Y. P., Timmerman, H., & Waldmann, H. (2017). Joining forces: the Chemical Biology-Medicinal Chemistry Continuum. Cell Chemical Biology, 24(9), 1058–1065. https://doi.org/10.1016/j.chembiol.2017.05.019.

    Article  CAS  PubMed  Google Scholar 

  8. Liu, R., Li, X., & Lam, K. S. (2017). Combinatorial chemistry in drug discovery. Current Opinion in Chemical Biology, 38, 117–126. https://doi.org/10.1016/j.cbpa.2017.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Erickson, B. K., Rose, C. M., Braun, C. R., Erickson, A. R., Knott, J., McAlister, G. C., et al. (2017). A strategy to combine sample multiplexing with targeted proteomics assays for high-throughput protein signature characterization. Molecular Cell, 65(2), 361–370. https://doi.org/10.1016/j.molcel.2016.12.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weeber, F., Ooft, S. N., Dijkstra, K. K., & Voest, E. E. (2017). Tumor organoids as a preclinical cancer model for drug discovery. Cell Chemical Biology, 24(9), 1092–1100. https://doi.org/10.1016/j.chembiol.2017.06.012.

    Article  CAS  PubMed  Google Scholar 

  11. Rashid, O. M., & Takabe, K. (2015). Animal models for exploring the pharmacokinetics of breast cancer therapies. Expert Opinion on Drug Metabolism & Toxicology, 11(2), 221–230. https://doi.org/10.1517/17425255.2015.983073.

    Article  CAS  Google Scholar 

  12. Wolf, C. R., & Henderson, C. J. (1998). Use of transgenic animals in understanding molecular mechanisms of toxicity. The Journal of Pharmacy and Pharmacology, 50(6), 567–574.

    Article  CAS  PubMed  Google Scholar 

  13. Ho, B. X., Pek, N. M. Q., & Soh, B. S. (2018). Disease modeling using 3D organoids derived from human induced pluripotent stem cells. International Journal of Molecular Sciences, 19(4). https://doi.org/10.3390/ijms19040936.

  14. Ozcelikkale, A., Moon, H. R., Linnes, M., & Han, B. (2017). In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 9(5). https://doi.org/10.1002/wnan.1460.

  15. Goel, S., England, C. G., Chen, F., & Cai, W. (2017). Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics. Advanced Drug Delivery Reviews, 113, 157–176. https://doi.org/10.1016/j.addr.2016.08.001.

    Article  CAS  PubMed  Google Scholar 

  16. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  17. Dawson, M. A. (2017). The cancer epigenome: concepts, challenges, and therapeutic opportunities. Science, 355(6330), 1147–1152. https://doi.org/10.1126/science.aam7304.

    Article  CAS  PubMed  Google Scholar 

  18. Ricciuti, B., De Giglio, A., Mecca, C., Arcuri, C., Marini, S., Metro, G., et al. (2018). Precision medicine against ALK-positive non-small cell lung cancer: beyond crizotinib. Medical Oncology, 35(5), 72. https://doi.org/10.1007/s12032-018-1133-4.

    Article  CAS  PubMed  Google Scholar 

  19. Hyman, D. M., Taylor, B. S., & Baselga, J. (2017). Implementing genome-driven oncology. Cell, 168(4), 584–599. https://doi.org/10.1016/j.cell.2016.12.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fusco, N., & Bosari, S. (2016). HER2 aberrations and heterogeneity in cancers of the digestive system: implications for pathologists and gastroenterologists. World Journal of Gastroenterology, 22(35), 7926–7937. https://doi.org/10.3748/wjg.v22.i35.7926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Piulats, J. M., Guerra, E., Gil-Martin, M., Roman-Canal, B., Gatius, S., Sanz-Pamplona, R., et al. (2017). Molecular approaches for classifying endometrial carcinoma. Gynecologic Oncology, 145(1), 200–207. https://doi.org/10.1016/j.ygyno.2016.12.015.

    Article  CAS  PubMed  Google Scholar 

  22. Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews. Cancer, 12(4), 252–264. https://doi.org/10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Patel, A., & Fong, L. (2018). Immunotherapy for prostate cancer: where do we go from here?-PART 1: prostate cancer vaccines. Oncology (Williston Park), 32(3), 112–120.

    Google Scholar 

  24. Kubben, N., & Misteli, T. (2017). Shared molecular and cellular mechanisms of premature aging and aging-associated diseases. Nature Reviews. Molecular Cell Biology, 18(10), 595–609. https://doi.org/10.1038/nrm.2017.68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Simabuco, F. M., Morale, M. G., Pavan, I. C. B., Morelli, A. P., Silva, F. R., & Tamura, R. E. (2018). p53 and metabolism: from mechanism to therapeutics. Oncotarget, 9(34), 2,378,023,823. https://doi.org/10.18632/oncotarget.25267.

    Article  Google Scholar 

  26. Proia, D. A., & Bates, R. C. (2014). Ganetespib and HSP90: translating preclinical hypotheses into clinical promise. Cancer Research, 74(5), 1294–1300. https://doi.org/10.1158/00085472.CAN-13-3263.

    Article  CAS  PubMed  Google Scholar 

  27. Thakur, M. K., Heilbrun, L. K., Sheng, S., Stein, M., Liu, G., Antonarakis, E. S., et al. (2016). A phase II trial of ganetespib, a heat shock protein 90 Hsp90 inhibitor, in patients with docetaxel-pretreated metastatic castrate-resistant prostate cancer (CRPC)-a prostate cancer clinical trials consortium (PCCTC) study. Investigational New Drugs, 34(1), 112–118. https://doi.org/10.1007/s10637-015-0307-6.

    Article  CAS  PubMed  Google Scholar 

  28. Heath, E. I., Hillman, D. W., Vaishampayan, U., Sheng, S., Sarkar, F., Harper, F., et al. (2008). A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clinical Cancer Research, 14(23), 7940–7946. https://doi.org/10.1158/1078-0432.CCR-08-0221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stratikopoulos, E. E., & Parsons, R. E. (2016). Molecular pathways: targeting the PI3K Pathway in Cancer-BET Inhibitors to the rescue. Clinical Cancer Research, 22(11), 2605–2610. https://doi.org/10.1158/1078-0432.CCR-15-2389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Medvetz, D., Priolo, C., & Henske, E. P. (2015). Therapeutic targeting of cellular metabolism in cells with hyperactive mTORC1: a paradigm shift. Molecular Cancer Research, 13(1), 3–8. https://doi.org/10.1158/1541-7786.MCR-14-0343.

    Article  CAS  PubMed  Google Scholar 

  31. Green, D. R., Galluzzi, L., & Kroemer, G. (2014). Cell biology. Metabolic control of cell death. Science, 345(6203), 1,250,256. https://doi.org/10.1126/science.1250256.

    Article  CAS  Google Scholar 

  32. Bissell, M. J., & Hines, W. C. (2011). Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature Medicine, 17(3), 320–329. https://doi.org/10.1038/nm.2328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bissell, M. J., Weaver, V. M., Lelievre, S. A., Wang, F., Petersen, O. W., & Schmeichel, K. L. (1999). Tissue structure, nuclear organization, and gene expression in normal and malignant breast. Cancer Research, 59(7 Suppl), 1757–1763s discussion 1763s–1764s.

    CAS  PubMed  Google Scholar 

  34. Bezecny, P. (2014). Histone deacetylase inhibitors in glioblastoma: pre-clinical and clinical experience. Medical Oncology, 31(6), 985. https://doi.org/10.1007/s12032-014-0985-5.

    Article  CAS  PubMed  Google Scholar 

  35. Fabregat, I., Fernando, J., Mainez, J., & Sancho, P. (2014). TGF-beta signaling in cancer treatment. Current Pharmaceutical Design, 20(17), 2934–2947.

    Article  CAS  PubMed  Google Scholar 

  36. Moustakas, A., Pardali, K., Gaal, A., & Heldin, C. H. (2002). Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunology Letters, 82(1–2), 85–91.

    Article  CAS  PubMed  Google Scholar 

  37. Del Re, M., Arrigoni, E., Restante, G., Passaro, A., Rofi, E., Crucitta, S., et al. (2018). Concise review: resistance to tyrosine kinase inhibitors in non-small Cell lkung cancer: the role of cancer stem cells. Stem Cells, 36(5), 633–640. https://doi.org/10.1002/stem.2787.

    Article  PubMed  Google Scholar 

  38. Melzer, C., von der Ohe, J., & Hass, R. (2018). Concise review: crosstalk of mesenchymal stroma/stem-like cells with cancer cells provides therapeutic potential. Stem Cells. https://doi.org/10.1002/stem.2829.

  39. Pattabiraman, D. R., & Weinberg, R. A. (2014). Tackling the cancer stem cells - what challenges do they pose. Nature Reviews. Drug Discovery, 13(7), 497–512. https://doi.org/10.1038/nrd4253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. D’Angelo, R. C., & Wicha, M. S. (2010). Stem cells in normal development and cancer. Progress in Molecular Biology and Translational Science, 95, 113–158. https://doi.org/10.1016/B978-0-12-385,071-3.00006-X.

    Article  PubMed  Google Scholar 

  41. Ferri, K. F., & Kroemer, G. (2001). Organelle-specific initiation of cell death pathways. Nature Cell Biology, 3(11), E255–E263. https://doi.org/10.1038/ncb1101-e255.

    Article  CAS  PubMed  Google Scholar 

  42. Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., et al. (2018). Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 25(3), 486–541. https://doi.org/10.1038/s41418-017-0012-4.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tsoi, J., Robert, L., Paraiso, K., Galvan, C., Sheu, K. M., Lay, J., et al. (2018). Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell, 33(5), 890–904 e895. https://doi.org/10.1016/j.ccell.2018.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Galluzzi, L., Bravo-San Pedro, J. M., & Kroemer, G. (2015). Ferroptosis in p53-dependent oncosuppression and organismal homeostasis. Cell Death and Differentiation, 22(8), 1237–1238. https://doi.org/10.1038/cdd.2015.54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garg, A. D., & Agostinis, P. (2017). Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunological Reviews, 280(1), 126–148. https://doi.org/10.1111/imr.12574.

    Article  CAS  PubMed  Google Scholar 

  46. Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gupta, P. B., Onder, T. T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R. A., et al. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 138(4), 645–659. https://doi.org/10.1016/j.cell.2009.06.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mai, T. T., Hamai, A., Hienzsch, A., Caneque, T., Muller, S., Wicinski, J., et al. (2017). Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nature Chemistry, 9(10), 1025–1033. https://doi.org/10.1038/nchem.2778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bernardo, M. M., Kaplun, A., Dzinic, S. H., Li, X., Irish, J., Mujagic, A., et al. (2015). Maspin expression in prostate tumor cells averts stemness and stratifies drug sensitivity. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-15-0234.

  50. Ohkubo, S., Dalla Via, L., Grancara, S., Kanamori, Y., Garcia-Argaez, A. N., Canettieri, G., et al. (2018). The antioxidant, aged garlic extract, exerts cytotoxic effects on wild-type and multidrug-resistant human cancer cells by altering mitochondrial permeability. International Journal of Oncology, 53(3), 1257–1268. https://doi.org/10.3892/ijo.2018.4452.

    Article  CAS  PubMed  Google Scholar 

  51. Ogita, A., Fujita, K., & Tanaka, T. (2012). Enhancing effects on vacuole-targeting fungicidal activity of amphotericin B. Frontiers in Microbiology, 3, 100. https://doi.org/10.3389/fmicb.2012.00100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Feinberg, A. P. (2007). Phenotypic plasticity and the epigenetics of human disease. Nature, 447(7143), 433–440. https://doi.org/10.1038/nature05919.

    Article  CAS  PubMed  Google Scholar 

  53. Holzel, M., Bovier, A., & Tuting, T. (2013). Plasticity of tumor and immune cells: a source of heterogeneity and a cause for therapy resistance. Nature Reviews. Cancer, 13(5), 365–376. https://doi.org/10.1038/nrc3498.

    Article  CAS  PubMed  Google Scholar 

  54. Jia, D., Jolly, M. K., Kulkarni, P., & Levine, H. (2017). Phenotypic plasticity and cell fate decisions in cancer: insights from dynamical systems theory. Cancers (Basel), 9(7). https://doi.org/10.3390/cancers9070070.

  55. Bernardo, M. M., Meng, Y., Lockett, J., Dyson, G., Dombkowski, A., Kaplun, A., et al. (2011). Maspin reprograms the gene expression profile of prostate carcinoma cells for differentiation. Genes & Cancer, 2(11), 1009–1022. https://doi.org/10.1177/1947601912440170.

    Article  CAS  Google Scholar 

  56. Zou, Z., Anisowicz, A., Hendrix, M. J., Thor, A., Neveu, M., Sheng, S., et al. (1994). Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science, 263(5146), 526–529.

    Article  CAS  PubMed  Google Scholar 

  57. Dzinic, S. H., Bernardo, M. M., Li, X., Fernandez-Valdivia, R., Ho, Y. S., Mi, Q. S., et al. (2017). An essential role of maspin in embryogenesis and tumor suppression. Cancer Research, 77(4), 886–896. https://doi.org/10.1158/0008-5472.CAN-16-2219.

    Article  CAS  PubMed  Google Scholar 

  58. Lockett, J., Yin, S., Li, X., Meng, Y., & Sheng, S. (2006). Tumor suppressive maspin and epithelial homeostasis. [Review]. Journal of Cellular Biochemistry, 97(4), 651–660. https://doi.org/10.1002/jcb.20721.

    Article  CAS  PubMed  Google Scholar 

  59. Bernardo, M. M., Dzinic, S. H., Matta, M. J., Dean, I., Saker, L., & Sheng, S. (2017). The Opportunity of precision medicine for breast cancer with context-sensitive tumor suppressor maspin. Journal of Cellular Biochemistry, 118(7), 1639–1647. https://doi.org/10.1002/jcb.25969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kaplun, A., Dzinic, S., Bernardo, M., & Sheng, S. (2012). Tumor suppressor maspin as a rheostat in HDAC regulation to achieve the fine-tuning of epithelial homeostasis. Critical Reviews in Eukaryotic Gene Expression, 22(3), 249–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, X., Yin, S., Meng, Y., Sakr, W., & Sheng, S. (2006). Endogenous inhibition of histone deacetylase 1 by tumor-suppressive maspin. Cancer Research, 66(18), 9323–9329. https://doi.org/10.1158/0008-5472.CAN-06-1578.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, M., Hendrix, M. J. C., Pemberton, P. A., Sakr, W. A., & Sheng, S. (2017). An Essential Role of Maspin in Embryogenesis and Tumor Suppression-Response. Cancer Research, 77(18), 5208–5210. https://doi.org/10.1158/0008-5472.CAN-17-1254.

    Article  CAS  PubMed  Google Scholar 

  63. Biliran Jr., H., & Sheng, S. (2001). Pleiotrophic inhibition of pericellular urokinase-type plasminogen activator system by endogenous tumor suppressive maspin. Cancer Research, 61(24), 8676–8682.

    CAS  PubMed  Google Scholar 

  64. Jiang, N., Meng, Y. H., Zhang, S. L., Mensah-Osman, E., & Sheng, S. J. (2002). Maspin sensitizes breast carcinoma cells to induced apoptosis. Oncogene, 21(26), 4089–4098. https://doi.org/10.1038/sj.onc.1205507.

    Article  CAS  PubMed  Google Scholar 

  65. Cher, M. L., Biliran, H. R., Bhagat, S., Meng, Y. H., Che, M. X., Lockett, J., et al. (2003). Maspin expression inhibits osteolysis, tumor growth, and angiogenesis in a model of prostate cancer bone metastasis. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7847–7852. https://doi.org/10.1073/pnas.1331360100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Domingo-Domenech, J., Vidal, S. J., Rodriguez-Bravo, V., Castillo-Martin, M., Quinn, S. A., Rodriguez-Barrueco, R., et al. (2012). Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell, 22(3), 373–388. https://doi.org/10.1016/j.ccr.2012.07.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hwang, C. (2012). Overcoming docetaxel resistance in prostate cancer: a perspective review. Therapeutic Advances in Medical Oncology, 4(6), 329–340. https://doi.org/10.1177/1758834012449685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. O’Neill, A. J., Prencipe, M., Dowling, C., Fan, Y., Mulrane, L., Gallagher, W. M., et al. (2011). Characterization and manipulation of docetaxel resistant prostate cancer cell lines. Molecular Cancer, 10, 126. https://doi.org/10.1186/1476-4598-10-126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, X. H., Chen, D., Yin, S. P., Meng, Y. H., Yang, H. J., Landis-Piwowar, K. R., et al. (2007). Maspin augments proteasome inhibitor-induced apoptosis in prostate cancer cells. Journal of Cellular Physiology, 212(2), 298–306. https://doi.org/10.1002/Jcp.21102.

    Article  CAS  PubMed  Google Scholar 

  70. Tahmatzopoulos, A., Sheng, S., & Kyprianou, N. (2005). Maspin sensitizes prostate cancer cells to doxazosin-induced apoptosis. Oncogene, 24(34), 5375–5383. https://doi.org/10.1038/sj.onc.1208684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, Y., Liu, L., Li, F., Wu, T., Jiang, H., Jiang, X., et al. (2017). Salinomycin Exerts Anticancer Effects on PC-3 Cells and PC-3-Derived Cancer Stem Cells In Vitro and In Vivo. BioMed Research International, 4, 101–653. https://doi.org/10.1155/2017/4101653.

    Article  CAS  Google Scholar 

Download references

Financial support

This work was supported by the NIH Grant P30CA022453 (to the Karmanos Cancer Institute (KCI) with Sheng, S. as a program leader), the Ruth Sager Memorial Fund (to Sheng, S.), the KCI Pilot Project Grant 25S5Z (to Sheng, S.), the KCI Prostate Cancer Research Pilot Project Grant (to Sheng, S.), and the KCI Tumor Biology and Microenvironment Program Pilot Project (to Sheng, S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijie Sheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, S., Margarida Bernardo, M., Dzinic, S.H. et al. Tackling tumor heterogeneity and phenotypic plasticity in cancer precision medicine: our experience and a literature review. Cancer Metastasis Rev 37, 655–663 (2018). https://doi.org/10.1007/s10555-018-9767-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-018-9767-4

Keywords

Navigation