Skip to main content

Advertisement

Log in

Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

While cytochrome P450 (CYP)-mediated biosynthesis of arachidonic acid (AA) epoxides promotes tumor growth by driving angiogenesis, cancer cell intrinsic functions of CYPs are less understood. CYP-derived AA epoxides, called epoxyeicosatrienoic acids (EETs), also promote the growth of tumor epithelia. In cancer cells, CYP AA epoxygenase enzymes are associated with STAT3 and mTOR signaling, but also localize in mitochondria, where they promote the electron transport chain (ETC). Recently, the diabetes drug metformin was found to inhibit CYP AA epoxygenase activity, allowing the design of more potent biguanides to target tumor growth. Biguanide inhibition of EET synthesis suppresses STAT3 and mTOR pathways, as well as the ETC. Convergence of biguanide activity and eicosanoid biology in cancer has shown a new pathway to attack cancer metabolism and provides hope for improved treatments that target this vulnerability. Inhibition of EET-mediated cancer metabolism and angiogenesis therefore provides a dual approach for targeted cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Panigrahy, D., Greene, E. R., Pozzi, A., Wang, D. W., & Zeldin, D. C. (2011). EET signaling in cancer. Cancer Metastasis Reviews, 30, 525–540. https://doi.org/10.1007/s10555-011-9315-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Capdevila, J., Chacos, N., Werringloer, J., Prough, R. A., & Estabrook, R. W. (1981). Liver microsomal cytochrome P-450 and the oxidative metabolism of arachidonic acid. Proceedings of the National Academy of Sciences of the United States of America, 78(9), 5362–5366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Capdevila, J., Parkhill, L., Chacos, N., Okita, R., Masters, B. S., & Estabrook, R. W. (1981). The oxidative metabolism of arachidonic acid by purified cytochromes P-450. Biochemical and Biophysical Research Communications, 101(4), 1357–1363.

    Article  PubMed  CAS  Google Scholar 

  4. Chacos, N., Falck, J. R., Wixtrom, C., & Capdevila, J. (1982). Novel epoxides formed during the liver cytochrome P-450 oxidation of arachidonic acid. Biochemical and Biophysical Research Communications, 104(3), 916–922.

    Article  PubMed  CAS  Google Scholar 

  5. Fleming, I. (2007). Epoxyeicosatrienoic acids, cell signaling and angiogenesis. Prostaglandins & Other Lipid Mediators, 82(1–4), 60–67.

    Article  CAS  Google Scholar 

  6. Fleming, I. (2008). Vascular cytochrome p450 enzymes: physiology and pathophysiology. Trends in Cardiovascular Medicine, 18(1), 20–25. https://doi.org/10.1016/j.tcm.2007.11.002.

    Article  PubMed  CAS  Google Scholar 

  7. Fleming, I. (2011). The cytochrome P450 pathway in angiogenesis and endothelial cell biology. Cancer Metastasis Reviews, 30, 541–555. https://doi.org/10.1007/s10555-011-9302-3.

    Article  PubMed  CAS  Google Scholar 

  8. Fleming, I. (2016). The factor in EDHF: cytochrome P450 derived lipid mediators and vascular signaling. Vascular Pharmacology, 86, 31–40. https://doi.org/10.1016/j.vph.2016.03.001.

    Article  PubMed  CAS  Google Scholar 

  9. Imig, J. D. (2005). Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. American Journal of Physiology Renal Physiology, 289(3), F496–F503. https://doi.org/10.1152/ajprenal.00350.2004.

    Article  PubMed  CAS  Google Scholar 

  10. Capdevila, J., & Wang, W. (2013). Role of cytochrome P450 epoxygenase in regulating renal membrane transport and hypertension. [Research Support, N.I.H., Extramural Review]. Current Opinion in Nephrology and Hypertension, 22(2), 163–169. https://doi.org/10.1097/MNH.0b013e32835d911e.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Capdevila, J. H., Wang, W., & Falck, J. R. (2015). Arachidonic acid monooxygenase: genetic and biochemical approaches to physiological/pathophysiological relevance. Prostaglandins & Other Lipid Mediators, 120, 40–49. https://doi.org/10.1016/j.prostaglandins.2015.05.004.

    Article  CAS  Google Scholar 

  12. Nakagawa, K., Holla, V. R., Wei, Y., Wang, W. H., Gatica, A., Wei, S., et al. (2006). Salt-sensitive hypertension is associated with dysfunctional Cyp4a10 gene and kidney epithelial sodium channel. [research support, N.I.H., extramural research support, non-U.S. Gov’t]. The Journal of Clinical Investigation, 116(6), 1696–1702. https://doi.org/10.1172/JCI27546.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Jiang, J. G., Chen, C. L., Card, J. W., Yang, S., Chen, J. X., Fu, X. N., Ning, Y. G., Xiao, X., Zeldin, D. C., & Wang, D. W. (2005). Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Research, 65(11), 4707–4715.

    Article  PubMed  CAS  Google Scholar 

  14. Jiang, J. G., Ning, Y. G., Chen, C., Ma, D., Liu, Z. J., Yang, S., Zhou, J., Xiao, X., Zhang, X. A., Edin, M. L., Card, J. W., Wang, J., Zeldin, D. C., & Wang, D. W. (2007). Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Research, 67(14), 6665–6674.

    Article  PubMed  CAS  Google Scholar 

  15. Yang, S., Wei, S., Pozzi, A., & Capdevila, J. H. (2009). The arachidonic acid epoxygenase is a component of the signaling mechanisms responsible for VEGF-stimulated angiogenesis. Archives of Biochemistry and Biophysics, 489(1–2), 82–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Pozzi, A., & Capdevila, J. H. (2008). PPARalpha ligands as antitumorigenic and antiangiogenic agents. PPAR Research, 2008, 906542–906548. https://doi.org/10.1155/2008/906542.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Pozzi, A., Ibanez, M. R., Gatica, A. E., Yang, S., Wei, S., Mei, S., Falck, J. R., & Capdevila, J. H. (2007). Peroxisomal proliferator-activated receptor-alpha-dependent inhibition of endothelial cell proliferation and tumorigenesis. The Journal of Biological Chemistry, 282(24), 17685–17695.

    Article  PubMed  CAS  Google Scholar 

  18. Mitra, R., Guo, Z., Milani, M., Mesaros, C., Rodriguez, M., Nguyen, J., Luo, X., Clarke, D., Lamba, J., Schuetz, E., Donner, D. B., Puli, N., Falck, J. R., Capdevila, J., Gupta, K., Blair, I. A., & Potter, D. A. (2011). CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (+/−)-14,15-epoxyeicosatrienoic acid (EET). The Journal of Biological Chemistry, 286(20), 17543–17559. https://doi.org/10.1074/jbc.M110.198515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Panigrahy, D., Edin, M. L., Lee, C. R., Huang, S., Bielenberg, D. R., Butterfield, C. E., Barnés, C. M., Mammoto, A., Mammoto, T., Luria, A., Benny, O., Chaponis, D. M., Dudley, A. C., Greene, E. R., Vergilio, J. A., Pietramaggiori, G., Scherer-Pietramaggiori, S. S., Short, S. M., Seth, M., Lih, F. B., Tomer, K. B., Yang, J., Schwendener, R. A., Hammock, B. D., Falck, J. R., Manthati, V. L., Ingber, D. E., Kaipainen, A., D’Amore, P. A., Kieran, M. W., & Zeldin, D. C. (2012). Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice. The Journal of Clinical Investigation, 122(1), 178–191. https://doi.org/10.1172/JCI58128.

    Article  PubMed  CAS  Google Scholar 

  20. Seubert, J. M., Zeldin, D. C., Nithipatikom, K., & Gross, G. J. (2007). Role of epoxyeicosatrienoic acids in protecting the myocardium following ischemia/reperfusion injury. Prostaglandins & Other Lipid Mediators, 82(1–4), 50–59. https://doi.org/10.1016/j.prostaglandins.2006.05.017.

    Article  CAS  Google Scholar 

  21. Campbell, W. B., & Harder, D. R. (1999). Endothelium-derived hyperpolarizing factors and vascular cytochrome P450 metabolites of arachidonic acid in the regulation of tone. Circulation Research, 84(4), 484–488.

    Article  PubMed  CAS  Google Scholar 

  22. Li, P. L., & Campbell, W. B. (1997). Epoxyeicosatrienoic acids activate K+ channels in coronary smooth muscle through a guanine nucleotide binding protein. Circulation Research, 80(6), 877–884.

    Article  PubMed  CAS  Google Scholar 

  23. Liu, X., Qian, Z. Y., Xie, F., Fan, W., Nelson, J. W., Xiao, X., Kaul, S., Barnes, A. P., & Alkayed, N. J. (2016). Functional screening for G protein-coupled receptor targets of 14,15-epoxyeicosatrienoic acid. Prostaglandins & Other Lipid Mediators, 132, 31–40. https://doi.org/10.1016/j.prostaglandins.2016.09.002.

    Article  CAS  Google Scholar 

  24. Pozzi, A., Popescu, V., Yang, S., Mei, S., Shi, M., Puolitaival, S. M., Caprioli, R. M., & Capdevila, J. H. (2010). The anti-tumorigenic properties of peroxisomal proliferator-activated receptor alpha are arachidonic acid epoxygenase-mediated. The Journal of Biological Chemistry, 285(17), 12840–12850.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Skrypnyk, N., Chen, X., Hu, W., Su, Y., Mont, S., Yang, S., Gangadhariah, M., Wei, S., Falck, J. R., Jat, J. L., Zent, R., Capdevila, J. H., & Pozzi, A. (2014). PPARalpha activation can help prevent and treat non-small cell lung cancer. Cancer Research, 74(2), 621–631. https://doi.org/10.1158/0008-5472.CAN-13-1928.

    Article  PubMed  CAS  Google Scholar 

  26. Guo, Z., Sevrioukova, I. F., Denisov, I. G., Zhang, X., Chiu, T.-L., Thomas, D. G., Hanse, E. A., Cuellar, R. A. D., Grinkova, Y. V., Langenfeld, V. W., Swedien, D. S., Stamschror, J. D., Alvarez, J., Luna, F., Galván, A., Bae, Y. K., Wulfkuhle, J. D., Gallagher, R. I., Petricoin 3rd, E. F., Norris, B., Flory, C. M., Schumacher, R. J., O'Sullivan, M. G., Cao, Q., Chu, H., Lipscomb, J. D., Atkins, W. M., Gupta, K., Kelekar, A., Blair, I. A., Capdevila, J. H., Falck, J. R., Sligar, S. G., Poulos, T. L., Georg, G. I., Ambrose, E., & Potter, D. A. (2017). Heme binding biguanides target cytochrome P450-dependent cancer cell mitochondria. Cell Chemical Biology, 24(10), 1259–1275. https://doi.org/10.1016/j.chembiol.2017.08.009.

    Article  PubMed  CAS  Google Scholar 

  27. Thuy Phuong, N. T., Kim, J. W., Kim, J. A., Jeon, J. S., Lee, J. Y., Xu, W. J., et al. (2017). Role of the CYP3A4-mediated 11,12-epoxyeicosatrienoic acid pathway in the development of tamoxifen-resistant breast cancer. Oncotarget, 8(41), 71054–71069. https://doi.org/10.18632/oncotarget.20329.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cheranov, S. Y., Karpurapu, M., Wang, D., Zhang, B., Venema, R. C., & Rao, G. N. (2008). An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. Blood, 111(12), 5581–5591.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Webler, A. C., Michaelis, U. R., Popp, R., Barbosa-Sicard, E., Murugan, A., Falck, J. R., Fisslthaler, B., & Fleming, I. (2008). Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis. American journal of physiology. Cell Physiology, 295(5), C1292–C1301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Rodriguez-Antona, C., & Ingelman-Sundberg, M. (2006). Cytochrome P450 pharmacogenetics and cancer. Oncogene, 25(11), 1679–1691. https://doi.org/10.1038/sj.onc.1209377.

    Article  PubMed  CAS  Google Scholar 

  31. Murray, G. I., Patimalla, S., Stewart, K. N., Miller, I. D., & Heys, S. D. (2010). Profiling the expression of cytochrome P450 in breast cancer. Histopathology, 57(2), 202–211.

    Article  PubMed  Google Scholar 

  32. Rifkind, A. B., Lee, C., Chang, T. K., & Waxman, D. J. (1995). Arachidonic acid metabolism by human cytochrome P450s 2C8, 2C9, 2E1, and 1A2: regioselective oxygenation and evidence for a role for CYP2C enzymes in arachidonic acid epoxygenation in human liver microsomes. Archives of Biochemistry and Biophysics, 320(2), 380–389.

    Article  PubMed  CAS  Google Scholar 

  33. Mesaros, C., Lee, S. H., & Blair, I. A. (2010). Analysis of epoxyeicosatrienoic acids by chiral liquid chromatography/electron capture atmospheric pressure chemical ionization mass spectrometry using [13C]-analog internal standards. [Research Support, N.I.H., Extramural]. Rapid Communications in Mass Spectrometry : RCM, 24(22), 3237–3247. https://doi.org/10.1002/rcm.4760.

    Article  PubMed  CAS  Google Scholar 

  34. Zeldin, D. C., DuBois, R. N., Falck, J. R., & Capdevila, J. H. (1995). Molecular cloning, expression and characterization of an endogenous human cytochrome P450 arachidonic acid epoxygenase isoform. Archives of Biochemistry and Biophysics, 322(1), 76–86.

    Article  PubMed  CAS  Google Scholar 

  35. Zeldin, D. C., Moomaw, C. R., Jesse, N., Tomer, K. B., Beetham, J., Hammock, B. D., & Wu, S. (1996). Biochemical characterization of the human liver cytochrome P450 arachidonic acid epoxygenase pathway. [Comparative Study Research Support, U.S. Gov’t, P.H.S.]. Archives of Biochemistry and Biophysics, 330(1), 87–96. https://doi.org/10.1006/abbi.1996.0229.

    Article  PubMed  CAS  Google Scholar 

  36. Zeldin, D. C., Foley, J., Ma, J., Boyle, J. E., Pascual, J. M., Moomaw, C. R., et al. (1996). CYP2J subfamily P450s in the lung: expression, localization, and potential functional significance. Molecular Pharmacology, 50(5), 1111–1117.

    PubMed  CAS  Google Scholar 

  37. Carver, K. A., Lourim, D., Tryba, A. K., & Harder, D. R. (2014). Rhythmic expression of cytochrome P450 epoxygenases CYP4x1 and CYP2c11 in the rat brain and vasculature. American journal of physiology. Cell physiology, 307(11), C989–C998. https://doi.org/10.1152/ajpcell.00401.2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Askari, A., Thomson, S. J., Edin, M. L., Zeldin, D. C., & Bishop-Bailey, D. (2013). Roles of the epoxygenase CYP2J2 in the endothelium. [Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t Review]. Prostaglandins & Other Lipid Mediators, 107, 56–63. https://doi.org/10.1016/j.prostaglandins.2013.02.003.

    Article  CAS  Google Scholar 

  39. Michaelis, U. R., Fisslthaler, B., Barbosa-Sicard, E., Falck, J. R., Fleming, I., & Busse, R. (2005). Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. Journal of Cell Science, 118(Pt 23), 5489–5498.

    Article  PubMed  CAS  Google Scholar 

  40. Fisslthaler, B., Popp, R., Kiss, L., Potente, M., Harder, D. R., Fleming, I., et al. (1999). Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature, 401(6752), 493–497. https://doi.org/10.1038/46816.

    Article  PubMed  CAS  Google Scholar 

  41. Siest, G., Jeannesson, E., Marteau, J. B., Samara, A., Marie, B., Pfister, M., & Visvikis-Siest, S. (2008). Transcription factor and drug-metabolizing enzyme gene expression in lymphocytes from healthy human subjects. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 36(1), 182–189. https://doi.org/10.1124/dmd.107.017228.

    Article  CAS  Google Scholar 

  42. Lee, S. H., Williams, M. V., DuBois, R. N., & Blair, I. A. (2003). Targeted lipidomics using electron capture atmospheric pressure chemical ionization mass spectrometry. Rapid Communications in Mass Spectrometry : RCM, 17(19), 2168–2176.

    Article  PubMed  CAS  Google Scholar 

  43. Mesaros, C., Lee, S. H., & Blair, I. A. (2009). Targeted quantitative analysis of eicosanoid lipids in biological samples using liquid chromatography-tandem mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 877(26), 2736–2745.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chacos, N., Capdevila, J., Falck, J. R., Manna, S., Martin-Wixtrom, C., Gill, S. S., Hammock, B. D., & Estabrook, R. W. (1983). The reaction of arachidonic acid epoxides (epoxyeicosatrienoic acids) with a cytosolic epoxide hydrolase. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Archives of Biochemistry and Biophysics, 223(2), 639–648.

    Article  PubMed  CAS  Google Scholar 

  45. Zeldin, D. C., Wei, S., Falck, J. R., Hammock, B. D., Snapper, J. R., & Capdevila, J. H. (1995). Metabolism of epoxyeicosatrienoic acids by cytosolic epoxide hydrolase: substrate structural determinants of asymmetric catalysis. Archives of Biochemistry and Biophysics, 316(1), 443–451.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang, G., Kodani, S., & Hammock, B. D. (2014). Stabilized epoxygenated fatty acids regulate inflammation, pain, angiogenesis and cancer. Progress in Lipid Research, 53, 108–123. https://doi.org/10.1016/j.plipres.2013.11.003.

    Article  PubMed  CAS  Google Scholar 

  47. Zhang, G., Panigrahy, D., Mahakian, L. M., Yang, J., Liu, J. Y., Stephen Lee, K. S., Wettersten, H. I., Ulu, A., Hu, X., Tam, S., Hwang, S. H., Ingham, E. S., Kieran, M. W., Weiss, R. H., Ferrara, K. W., & Hammock, B. D. (2013). Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 110(16), 6530–6535. https://doi.org/10.1073/pnas.1304321110.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Osanai, M., Sawada, N., & Lee, G. H. (2010). Oncogenic and cell survival properties of the retinoic acid metabolizing enzyme, CYP26A1. Oncogene, 29(8), 1135–1144. https://doi.org/10.1038/onc.2009.414.

    Article  PubMed  CAS  Google Scholar 

  49. Michaelis, U. R., Fisslthaler, B., Medhora, M., Harder, D., Fleming, I., & Busse, R. (2003). Cytochrome P450 2C9-derived epoxyeicosatrienoic acids induce angiogenesis via cross-talk with the epidermal growth factor receptor (EGFR). FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 17(6), 770–772. https://doi.org/10.1096/fj.02-0640fje.

    Article  CAS  Google Scholar 

  50. Larsen, B. T., Gutterman, D. D., & Hatoum, O. A. (2006). Emerging role of epoxyeicosatrienoic acids in coronary vascular function. European Journal of Clinical Investigation, 36(5), 293–300. https://doi.org/10.1111/j.1365-2362.2006.01634.x.

    Article  PubMed  CAS  Google Scholar 

  51. Wang, D., & Dubois, R. N. (2012). Epoxyeicosatrienoic acids: a double-edged sword in cardiovascular diseases and cancer. The Journal of Clinical Investigation, 122(1), 19–22. https://doi.org/10.1172/JCI61453.

    Article  PubMed  CAS  Google Scholar 

  52. Seubert, J., Yang, B., Bradbury, J. A., Graves, J., Degraff, L. M., Gabel, S., et al. (2004). Enhanced postischemic functional recovery in CYP2J2 transgenic hearts involves mitochondrial ATP-sensitive K+ channels and p42/p44 MAPK pathway. Circulation Research, 95(5), 506–514. https://doi.org/10.1161/01.RES.0000139436.89654.c8.

    Article  PubMed  CAS  Google Scholar 

  53. Seubert, J. M., Sinal, C. J., Graves, J., DeGraff, L. M., Bradbury, J. A., Lee, C. R., et al. (2006). Role of soluble epoxide hydrolase in postischemic recovery of heart contractile function. Circulation Research, 99(4), 442–450. https://doi.org/10.1161/01.RES.0000237390.92932.37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Borzelleca, J. F. (2000). Paracelsus: herald of modern toxicology. Toxicological Sciences : an Official Journal of the Society of Toxicology, 53(1), 2–4.

    Article  CAS  Google Scholar 

  55. Inceoglu, B., Jinks, S. L., Schmelzer, K. R., Waite, T., Kim, I. H., & Hammock, B. D. (2006). Inhibition of soluble epoxide hydrolase reduces LPS-induced thermal hyperalgesia and mechanical allodynia in a rat model of inflammatory pain. Life Sciences, 79(24), 2311–2319. https://doi.org/10.1016/j.lfs.2006.07.031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Rose, T. E., Morisseau, C., Liu, J. Y., Inceoglu, B., Jones, P. D., Sanborn, J. R., & Hammock, B. D. (2010). 1-Aryl-3-(1-acylpiperidin-4-yl)urea inhibitors of human and murine soluble epoxide hydrolase: structure-activity relationships, pharmacokinetics, and reduction of inflammatory pain. Journal of Medicinal Chemistry, 53(19), 7067–7075. https://doi.org/10.1021/jm100691c.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Chen, C., Wei, X., Rao, X., Wu, J., Yang, S., Chen, F., Ma, D., Zhou, J., Dackor, R. T., Zeldin, D. C., & Wang, D. W. (2011). Cytochrome P450 2J2 is highly expressed in hematologic malignant diseases and promotes tumor cell growth. The Journal of Pharmacology and Experimental Therapeutics, 336(2), 344–355. https://doi.org/10.1124/jpet.110.174805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Enayetallah, A. E., French, R. A., & Grant, D. F. (2006). Distribution of soluble epoxide hydrolase, cytochrome P450 2C8, 2C9 and 2J2 in human malignant neoplasms. Journal of Molecular Histology, 37(3–4), 133–141.

    Article  PubMed  CAS  Google Scholar 

  59. Pozzi, A., Macias-Perez, I., Abair, T., Wei, S., Su, Y., Zent, R., Falck, J. R., & Capdevila, J. H. (2005). Characterization of 5,6- and 8,9-epoxyeicosatrienoic acids (5,6- and 8,9-EET) as potent in vivo angiogenic lipids. The Journal of Biological Chemistry, 280(29), 27138–27146.

    Article  PubMed  CAS  Google Scholar 

  60. Gilroy, D. W., Edin, M. L., De Maeyer, R. P., Bystrom, J., Newson, J., Lih, F. B., et al. (2016). CYP450-derived oxylipins mediate inflammatory resolution. Proceedings of the National Academy of Sciences of the United States of America, 113(23), E3240–E3249. https://doi.org/10.1073/pnas.1521453113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Schmelzle, M., Dizdar, L., Matthaei, H., Baldus, S. E., Wolters, J., Lindenlauf, N., Bruns, I., Cadeddu, R. P., Kröpil, F., Topp, S. A., Schulte am Esch II, J., Eisenberger, C. F., Knoefel, W. T., & Stoecklein, N. H. (2011). Esophageal cancer proliferation is mediated by cytochrome P450 2C9 (CYP2C9). Prostaglandins & Other Lipid Mediators, 94(1–2), 25–33. https://doi.org/10.1016/j.prostaglandins.2010.12.001.

    Article  CAS  Google Scholar 

  62. Oguro, A., Sakamoto, K., Funae, Y., & Imaoka, S. (2011). Overexpression of CYP3A4, but not CYP2D6, promotes hypoxic response and cell growth of Hep3B cells. Drug metabolism and Pharmacokinetics, 26, 407–415.

    Article  PubMed  CAS  Google Scholar 

  63. Shao, J., Li, Q., Wang, H., Liu, F., Jiang, J., Zhu, X., Chen, Z., & Zou, P. (2011). P-450-dependent epoxygenase pathway of arachidonic acid is involved in myeloma-induced angiogenesis of endothelial cells. Journal of Huazhong University of Science and Technology. Medical Sciences, 31(5), 596–601. https://doi.org/10.1007/s11596-011-0567-0.

    Article  CAS  Google Scholar 

  64. Shao, J., Wang, H., Yuan, G., Chen, Z., & Li, Q. (2016). Involvement of the arachidonic acid cytochrome P450 epoxygenase pathway in the proliferation and invasion of human multiple myeloma cells. PeerJ, 4, e1925. https://doi.org/10.7717/peerj.1925.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wei, X., Zhang, D., Dou, X., Niu, N., Huang, W., Bai, J., et al. (2014). Elevated 14,15- epoxyeicosatrienoic acid by increasing of cytochrome P450 2C8, 2C9 and 2J2 and decreasing of soluble epoxide hydrolase associated with aggressiveness of human breast cancer. [Research Support, Non-U.S. Gov’t]. BMC Cancer, 14, 841. https://doi.org/10.1186/1471-2407-14-841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Floriano-Sanchez, E., Rodriguez, N. C., Bandala, C., Coballase-Urrutia, E., & Lopez-Cruz, J. (2014). CYP3A4 expression in breast cancer and its association with risk factors in Mexican women. [Research Support, Non-U.S. Gov’t]. Asian Pacific Journal of Cancer Prevention : APJCP, 15(8), 3805–3809.

    Article  PubMed  Google Scholar 

  67. Bajpai, P., Srinivasan, S., Ghosh, J., Nagy, L. D., Wei, S., Guengerich, F. P., & Avadhani, N. G. (2014). Targeting of splice variants of human cytochrome P450 2C8 (CYP2C8) to mitochondria and their role in arachidonic acid metabolism and respiratory dysfunction. The Journal of Biological Chemistry, 289(43), 29614–29630. https://doi.org/10.1074/jbc.M114.583062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Zou, A. P., Ma, Y. H., Sui, Z. H., Ortiz de Montellano, P. R., Clark, J. E., Masters, B. S., et al. (1994). Effects of 17-octadecynoic acid, a suicide-substrate inhibitor of cytochrome P450 fatty acid omega-hydroxylase, on renal function in rats. The Journal of Pharmacology and Experimental Therapeutics, 268(1), 474–481.

    PubMed  CAS  Google Scholar 

  69. Wang, M. H., Brand-Schieber, E., Zand, B. A., Nguyen, X., Falck, J. R., Balu, N., et al. (1998). Cytochrome P450-derived arachidonic acid metabolism in the rat kidney: characterization of selective inhibitors. The Journal of Pharmacology and Experimental Therapeutics, 284(3), 966–973.

    PubMed  CAS  Google Scholar 

  70. Zou, A. P., Imig, J. D., Kaldunski, M., Ortiz de Montellano, P. R., Sui, Z., & Roman, R. J. (1994). Inhibition of renal vascular 20-HETE production impairs autoregulation of renal blood flow. The American Journal of Physiology, 266(2 Pt 2), F275–F282. https://doi.org/10.1152/ajprenal.1994.266.2.F275.

    Article  PubMed  CAS  Google Scholar 

  71. Brand-Schieber, E., Falck, J. F., & Schwartzman, M. (2000). Selective inhibition of arachidonic acid epoxidation in vivo. Journal of Physiology and Pharmacology, 51(4 Pt 1), 655–672.

    PubMed  CAS  Google Scholar 

  72. Lin, H.-l., Zhang, H., Walker, V. J., D’Agostino, J., & Hollenberg, P. F. (2017). Heme modification contributes to the mechanism-based inactivation of human cytochrome P450 2J2 by two terminal acetylenic compounds. Drug Metabolism and Disposition, 45(9), 990.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Arrowsmith, C. H., Audia, J. E., Austin, C., Baell, J., Bennett, J., Blagg, J., Bountra, C., Brennan, P. E., Brown, P. J., Bunnage, M. E., Buser-Doepner, C., Campbell, R. M., Carter, A. J., Cohen, P., Copeland, R. A., Cravatt, B., Dahlin, J. L., Dhanak, D., Edwards, A. M., Frederiksen, M., Frye, S. V., Gray, N., Grimshaw, C. E., Hepworth, D., Howe, T., Huber, K. V. M., Jin, J., Knapp, S., Kotz, J. D., Kruger, R. G., Lowe, D., Mader, M. M., Marsden, B., Mueller-Fahrnow, A., Müller, S., O'Hagan, R. C., Overington, J. P., Owen, D. R., Rosenberg, S. H., Ross, R., Roth, B., Schapira, M., Schreiber, S. L., Shoichet, B., Sundström, M., Superti-Furga, G., Taunton, J., Toledo-Sherman, L., Walpole, C., Walters, M. A., Willson, T. M., Workman, P., Young, R. N., & Zuercher, W. J. (2015). The promise and peril of chemical probes. Nature Chemical Biology, 11(8), 536–541. https://doi.org/10.1038/nchembio.1867.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Sisignano, M., Angioni, C., Park, C. K., Meyer Dos Santos, S., Jordan, H., Kuzikov, M., Liu, D., Zinn, S., Hohman, S. W., Schreiber, Y., Zimmer, B., Schmidt, M., Lu, R., Suo, J., Zhang, D. D., Schäfer, S. M. G., Hofmann, M., Yekkirala, A. S., de Bruin, N., Parnham, M. J., Woolf, C. J., Ji, R. R., Scholich, K., & Geisslinger, G. (2016). Targeting CYP2J to reduce paclitaxel-induced peripheral neuropathic pain. Proceedings of the National Academy of Sciences of the United States of America, 113(44), 12544–12549. https://doi.org/10.1073/pnas.1613246113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Chen, C., Li, G., Liao, W., Wu, J., Liu, L., Ma, D., Zhou, J., Elbekai, R. H., Edin, M. L., Zeldin, D. C., & Wang, D. W. (2009). Selective inhibitors of CYP2J2 related to terfenadine exhibit strong activity against human cancers in vitro and in vivo. The Journal of Pharmacology and Experimental Therapeutics, 329(3), 908–918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Nithipatikom, K., Brody, D. M., Tang, A. T., Manthati, V. L., Falck, J. R., Williams, C. L., & Campbell, W. B. (2010). Inhibition of carcinoma cell motility by epoxyeicosatrienoic acid (EET) antagonists. Cancer Science, 101(12), 2629–2636. https://doi.org/10.1111/j.1349-7006.2010.01713.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Vriens, J., Owsianik, G., Fisslthaler, B., Suzuki, M., Janssens, A., Voets, T., et al. (2005). Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. [Research Support, Non-U.S. Gov’t]. Circulation Research, 97(9), 908–915. https://doi.org/10.1161/01.RES.0000187474.47805.30.

    Article  PubMed  CAS  Google Scholar 

  78. Chong, C. R., Xu, J., Lu, J., Bhat, S., Sullivan Jr., D. J., & Liu, J. O. (2007). Inhibition of angiogenesis by the antifungal drug itraconazole. ACS Chemical Biology, 2(4), 263–270. https://doi.org/10.1021/cb600362d.

    Article  PubMed  CAS  Google Scholar 

  79. Ernest 2nd, C. S., Hall, S. D., & Jones, D. R. (2005). Mechanism-based inactivation of CYP3A by HIV protease inhibitors. The Journal of Pharmacology and Experimental Therapeutics, 312(2), 583–591.

    Article  PubMed  CAS  Google Scholar 

  80. Gaedicke, S., Firat-Geier, E., Constantiniu, O., Lucchiari-Hartz, M., Freudenberg, M., Galanos, C., et al. (2002). Antitumor effect of the human immunodeficiency virus protease inhibitor ritonavir: induction of tumor-cell apoptosis associated with perturbation of proteasomal proteolysis. Cancer Research, 62(23), 6901–6908.

    PubMed  CAS  Google Scholar 

  81. Katragadda, D., Batchu, S. N., Cho, W. J., Chaudhary, K. R., Falck, J. R., & Seubert, J. M. (2009). Epoxyeicosatrienoic acids limit damage to mitochondrial function following stress in cardiac cells. [Research Support, Non-U.S. Gov’t]. Journal of Molecular and Cellular Cardiology, 46(6), 867–875. https://doi.org/10.1016/j.yjmcc.2009.02.028.

    Article  PubMed  CAS  Google Scholar 

  82. Liu, L., Chen, C., Gong, W., Li, Y., Edin, M. L., Zeldin, D. C., & Wang, D. W. (2011). Epoxyeicosatrienoic acids attenuate reactive oxygen species level, mitochondrial dysfunction, caspase activation, and apoptosis in carcinoma cells treated with arsenic trioxide. [Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t]. The Journal of Pharmacology and Experimental Therapeutics, 339(2), 451–463. https://doi.org/10.1124/jpet.111.180505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Ghersi-Egea, J. F., Perrin, R., Leininger-Muller, B., Grassiot, M. C., Jeandel, C., Floquet, J., Cuny, G., Siest, G., & Minn, A. (1993). Subcellular localization of cytochrome P450, and activities of several enzymes responsible for drug metabolism in the human brain. Biochemical Pharmacology, 45(3), 647–658.

    Article  PubMed  CAS  Google Scholar 

  84. Su, P., Rennert, H., Shayiq, R. M., Yamamoto, R., Zheng, Y. M., Addya, S., et al. (1990). A cDNA encoding a rat mitochondrial cytochrome P450 catalyzing both the 26-hydroxylation of cholesterol and 25-hydroxylation of vitamin D3: gonadotropic regulation of the cognate mRNA in ovaries. DNA and Cell Biology, 9(9), 657–667. https://doi.org/10.1089/dna.1990.9.657.

    Article  PubMed  CAS  Google Scholar 

  85. de Brito, O. M., & Scorrano, L. (2010). An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. The EMBO Journal, 29(16), 2715–2723. https://doi.org/10.1038/emboj.2010.177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Sepuri, N. B., Yadav, S., Anandatheerthavarada, H. K., & Avadhani, N. G. (2007). Mitochondrial targeting of intact CYP2B1 and CYP2E1 and N-terminal truncated CYP1A1 proteins in Saccharomyces cerevisiae--role of protein kinase A in the mitochondrial targeting of CYP2E1. The FEBS Journal, 274(17), 4615–4630. https://doi.org/10.1111/j.1742-4658.2007.05990.x.

    Article  PubMed  CAS  Google Scholar 

  87. Addya, S., Anandatheerthavarada, H. K., Biswas, G., Bhagwat, S. V., Mullick, J., & Avadhani, N. G. (1997). Targeting of NH2-terminal-processed microsomal protein to mitochondria: a novel pathway for the biogenesis of hepatic mitochondrial P450MT2. The Journal of Cell Biology, 139(3), 589–599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Robin, M. A., Anandatheerthavarada, H. K., Fang, J. K., Cudic, M., Otvos, L., & Avadhani, N. G. (2001). Mitochondrial targeted cytochrome P450 2E1 (P450 MT5) contains an intact N terminus and requires mitochondrial specific electron transfer proteins for activity. The Journal of Biological Chemistry, 276(27), 24680–24689. https://doi.org/10.1074/jbc.M100363200.

    Article  PubMed  CAS  Google Scholar 

  89. Bansal, S., Leu, A. N., Gonzalez, F. J., Guengerich, F. P., Chowdhury, A. R., Anandatheerthavarada, H. K., & Avadhani, N. G. (2014). Mitochondrial targeting of cytochrome P450 (CYP) 1B1 and its role in polycyclic aromatic hydrocarbon-induced mitochondrial dysfunction. The Journal of Biological Chemistry, 289(14), 9936–9951. https://doi.org/10.1074/jbc.M113.525659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Srirangam, A., Mitra, R., Wang, M., Gorski, J. C., Badve, S., Baldridge, L., et al. (2006). Effects of HIV protease inhibitor ritonavir on Akt-regulated cell proliferation in breast cancer. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research, 12(6), 1883–1896.

    Article  CAS  Google Scholar 

  91. Srirangam, A., Milani, M., Mitra, R., Guo, Z., Rodriguez, M., Kathuria, H., Fukuda, S., Rizzardi, A., Schmechel, S., Skalnik, D. G., Pelus, L. M., & Potter, D. A. (2011). The human immunodeficiency virus protease inhibitor ritonavir inhibits lung cancer cells, in part, by inhibition of survivin. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of Thoracic Cncology : Official Publication of the International Association for the Study of Lung Cancer, 6(4), 661–670. https://doi.org/10.1097/JTO.0b013e31820c9e3c.

    Article  Google Scholar 

  92. Kim, J., Tang, J. Y., Gong, R., Kim, J., Lee, J. J., Clemons, K. V., Chong, C. R., Chang, K. S., Fereshteh, M., Gardner, D., Reya, T., Liu, J. O., Epstein, E. H., Stevens, D. A., & Beachy, P. A. (2010). Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell, 17(4), 388–399. https://doi.org/10.1016/j.ccr.2010.02.027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Wang, X., Wei, S., Zhao, Y., Shi, C., Liu, P., Zhang, C., Lei, Y., Zhang, B., Bai, B., Huang, Y., & Zhang, H. (2017). Anti-proliferation of breast cancer cells with itraconazole: Hedgehog pathway inhibition induces apoptosis and autophagic cell death. Cancer Letters, 385, 128–136. https://doi.org/10.1016/j.canlet.2016.10.034.

    Article  PubMed  CAS  Google Scholar 

  94. Phuong, N. T. T., Kim, J. W., Kim, J.-A., Jeon, J. S., Lee, J.-Y., Xu, W. J., et al. (2017). Role of the CYP3A4-mediated 11,12-epoxyeicosatrienoic acid pathway in the development of tamoxifen-resistant breast cancer. Oncotarget, 8(41), doi: 10.18632/oncotarget.20329.

  95. Forgue-Lafitte, M. E., Coudray, A. M., Fagot, D., & Mester, J. (1992). Effects of ketoconazole on the proliferation and cell cycle of human cancer cell lines. Cancer Research, 52(24), 6827–6831.

    PubMed  CAS  Google Scholar 

  96. Choi, Y. H., & Lee, M. G. (2012). Pharmacokinetic and pharmacodynamic interaction between nifedipine and metformin in rats: competitive inhibition for metabolism of nifedipine and metformin by each other via CYP isozymes. Xenobiotica; the Fate of Foreign Compounds in Biological Systems, 42(5), 483–495. https://doi.org/10.3109/00498254.2011.633177.

    Article  PubMed  CAS  Google Scholar 

  97. Choi, Y. H., Lee, U., Lee, B. K., & Lee, M. G. (2010). Pharmacokinetic interaction between itraconazole and metformin in rats: competitive inhibition of metabolism of each drug by each other via hepatic and intestinal CYP3A1/2. [Research Support, Non-U.S. Gov’t]. British Journal of Pharmacology, 161(4), 815–829. https://doi.org/10.1111/j.1476-5381.2010.00913.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Dowling, R. J., Zakikhani, M., Fantus, I. G., Pollak, M., & Sonenberg, N. (2007). Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. [Research Support, Non-U.S. Gov’t]. Cancer Research, 67(22), 10804–10812. https://doi.org/10.1158/0008-5472.CAN-07-2310.

    Article  PubMed  CAS  Google Scholar 

  99. Zakikhani, M., Dowling, R., Fantus, I. G., Sonenberg, N., & Pollak, M. (2006). Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. [Research Support, Non-U.S. Gov’t]. Cancer Research, 66(21), 10269–10273. https://doi.org/10.1158/0008-5472.CAN-06-1500.

    Article  PubMed  CAS  Google Scholar 

  100. Zakikhani, M., Blouin, M. J., Piura, E., & Pollak, M. N. (2010). Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. [Research Support, Non-U.S. Gov’t]. Breast Cancer Research and Treatment, 123(1), 271–279. https://doi.org/10.1007/s10549-010-0763-9.

    Article  PubMed  CAS  Google Scholar 

  101. Deng, X. S., Wang, S., Deng, A., Liu, B., Edgerton, S. M., Lind, S. E., Wahdan-Alaswad, R., & Thor, A. D. (2012). Metformin targets Stat3 to inhibit cell growth and induce apoptosis in triple-negative breast cancers. Cell Cycle, 11(2), 367–376. https://doi.org/10.4161/cc.11.2.18813.

    Article  PubMed  CAS  Google Scholar 

  102. Chandel, N. S., Avizonis, D., Reczek, C. R., Weinberg, S. E., Menz, S., Neuhaus, R., Christian, S., Haegebarth, A., Algire, C., & Pollak, M. (2016). Are metformin doses used in murine cancer models clinically relevant? Cell Metabolism, 23(4), 569–570. https://doi.org/10.1016/j.cmet.2016.03.010.

    Article  PubMed  CAS  Google Scholar 

  103. Kim, S. W., Jun, S. S., Min, C. H., Kim, Y. W., Kang, M., S, Oh, B. K., et al. (2011). Biguanide derivative, a preparation method thereof and a pharmaceutical composition containing the biguanide derivative as an active ingredient. . In U. S. P. a. T. Office (Ed.), Patent application WO 2011083998 (Vol. A1, pp. 1–14). Korea: Hanall Biopharma Co., Ltd.

  104. Eagling, V. A., Back, D. J., & Barry, M. G. (1997). Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. British Journal of Clinical Pharmacology, 44(2), 190–194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Akiyoshi, T., Saito, T., Murase, S., Miyazaki, M., Murayama, N., Yamazaki, H., Guengerich, F. P., Nakamura, K., Yamamoto, K., & Ohtani, H. (2011). Comparison of the inhibitory profiles of itraconazole and cimetidine in cytochrome P450 3A4 genetic variants. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 39(4), 724–728. https://doi.org/10.1124/dmd.110.036780.

    Article  CAS  Google Scholar 

  106. Ikezoe, T., Saito, T., Bandobashi, K., Yang, Y., Koeffler, H. P., & Taguchi, H. (2004). HIV-1 protease inhibitor induces growth arrest and apoptosis of human multiple myeloma cells via inactivation of signal transducer and activator of transcription 3 and extracellular signal-regulated kinase 1/2. Molecular Cancer Therapeutics, 3(4), 473–479.

    PubMed  CAS  Google Scholar 

  107. Scharping, N. E., Menk, A. V., Whetstone, R. D., Zeng, X., & Delgoffe, G. M. (2017). Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunology Research, 5(1), 9–16. https://doi.org/10.1158/2326-6066.CIR-16-0103.

    Article  PubMed  CAS  Google Scholar 

  108. Allison, S. E., Chen, Y., Petrovic, N., Zhang, J., Bourget, K., Mackenzie, P. I., & Murray, M. (2017). Activation of ALDH1A1 in MDA-MB-468 breast cancer cells that over-express CYP2J2 protects against paclitaxel-dependent cell death mediated by reactive oxygen species. Biochemical Pharmacology, 143, 79–89. https://doi.org/10.1016/j.bcp.2017.07.020.

    Article  PubMed  CAS  Google Scholar 

  109. Cristofanilli, M., Turner, N. C., Bondarenko, I., Ro, J., Im, S. A., Masuda, N., Colleoni, M., DeMichele, A., Loi, S., Verma, S., Iwata, H., Harbeck, N., Zhang, K., Theall, K. P., Jiang, Y., Bartlett, C. H., Koehler, M., & Slamon, D. (2016). Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. The Lancet Oncology, 17(4), 425–439. https://doi.org/10.1016/S1470-2045(15)00613-0.

    Article  PubMed  CAS  Google Scholar 

  110. Sledge Jr., G. W., Toi, M., Neven, P., Sohn, J., Inoue, K., Pivot, X., Burdaeva, O., Okera, M., Masuda, N., Kaufman, P. A., Koh, H., Grischke, E. M., Frenzel, M., Lin, Y., Barriga, S., Smith, I. C., Bourayou, N., & Llombart-Cussac, A. (2017). MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 35(25), 2875–2884. https://doi.org/10.1200/JCO.2017.73.7585.

    Article  Google Scholar 

  111. Zhang, Y., El-Sikhry, H., Chaudhary, K. R., Batchu, S. N., Shayeganpour, A., Jukar, T. O., et al. (2009). Overexpression of CYP2J2 provides protection against doxorubicin-induced cardiotoxicity. [Research Support, Non-U.S. Gov’t]. American Journal of Physiology. Heart and Circulatory Physiology, 297(1), H37–H46. https://doi.org/10.1152/ajpheart.00983.2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Kaur, P., Chamberlin, A. R., Poulos, T. L., & Sevrioukova, I. F. (2016). Structure-based inhibitor design for evaluation of a CYP3A4 pharmacophore model. Journal of Medicinal Chemistry, 59(9), 4210–4220. https://doi.org/10.1021/acs.jmedchem.5b01146.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Support is acknowledged of the Center for Translational Medicine of the UMN. We thank Drs. Michael Pollak, Douglas Yee, Stephen Sligar, Ilia Denisov, Irina Sevrioukova, Thomas Poulos, Ian Blair, John Lipscomb, Bruce Hammock, Jorge Capdevila, John Falck, Emanuel Petricoin, Robert Schumacher, Kalpna Gupta, Elizabeth Amin, and Gunda Georg, and Luis Herrera for very kind and helpful advice in the course of our work. We thank Ashley Mooneyham, Cesar Herrera, Victor Arrieta, Adela Galvan, Fernando Luna, Sebastian Mohar, Alejandra Osorio, Ted Bebi, and Katherine Hoversten for contributions to the early phases of this work. We thank Michael Franklin for help with editing of the manuscript. Mitochondrial image credit for Fig. 2 is ChemDraw by Perkin Elmer Informatics. Mitochondrial image credit for Fig. 4 is: Extender_01/stock.adobe. com. We thank Sabrina Porter, Department of Medicine, University of Minnesota for artwork in Fig. 1. We gratefully acknowledge the many authors in the field of CYP monooxygenase biology who have contributed to this field and whose important work was not included in this review due to limitations of space.

Funding

This study is supported through R01-CA113570, Susan G. Komen Foundation grant KG090861, Randy Shaver Foundation and Community Fund, Minnesota Partnership for Biotechnology and Medical Genomics, University of Minnesota (UMN) Medical School Research Renewal Program to D.A.P. and Dr. Carol Lange, the Dr. Barbara Bowers Fund of the Fairview Foundation, an unrestricted grant from ImmunoMet, Inc. to the University of Minnesota Foundation, and the State of Minnesota and University of Minnesota CTSI through the Translational Product Development Fund (TPDF) to D.A.P. and Dr. Robert Schumacher. We acknowledge a Brainstorm Grant from the Masonic Cancer Center to D.A.P. and Dr. Michael Farrar. We also acknowledge Masonic Cancer Center NIH grant P30-CA077598 (Dr. Douglas Yee, P.I.) for Analytical Biochemistry core support and the National Center for Advancing Translational Sciences of the NIH Award Numbers UL1TR000114 and UL1TR000135 (Dr. Bruce Blazar, P.I.). Instituto Nacional de Cancerologica de México, Patronato del Instituto Nacional de Cancerología, Consejo Nacional de Ciencia y Tecnologia, grant 280148 for visiting student support. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

Drs. Zhijun Guo and David Potter wrote and edited this manuscript. Dr. Guo performed assays of CYP epoxygenase activity. Veronica Johnson, Jaime Barrera, Mariel Porras, Diego Hinojosa, Irwin Hernández, and Patrick McGarrah performed tissue surveys of Cyp AA epoxygenase expression in mouse tissues and mouse models of mammary carcinomas and contributed to discussions of the concepts presented. We thank Michael Franklin for help with editing of the manuscript.

Corresponding author

Correspondence to David A. Potter.

Ethics declarations

Competing interest

There is an HBB use patent application (UMN).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Johnson, V., Barrera, J. et al. Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them. Cancer Metastasis Rev 37, 409–423 (2018). https://doi.org/10.1007/s10555-018-9749-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-018-9749-6

Keywords

Navigation