Skip to main content
Log in

Cleavage and phosphorylation: important post-translational modifications of galectin-3

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

As the unique chimeric member of the β-galactoside-binding protein family, galectin-3 is a multivalent and multifunctional oncogenic protein involved in multiple physiological and pathological processes, including cell growth, cell differentiation, cell adhesion, RNA splicing, cell apoptosis, and malignant transformation. Post-translational modifications can effectively increase a protein’s functional diversity, either by degradation or adding chemical modifications, thus regulating activity, localization, and ligand interaction. In order to clearly understand the functional mechanisms of galectin-3 involved in normal cell biology and pathogenesis, here, we have summarized the previously reported post-translational modifications of galectin-3, including cleavage and phosphorylation. Cleavage of galectin-3 by MMPs, PSA, and proteases from parasites generated intact carbohydrate-recognition domain and N-terminal peptides of varying lengths that retained lectin binding activity but lost multivalence. Serine and tyrosine phosphorylation of galectin-3 by c-Abl, CKI, and GSK-3β could regulate its localization and associated signal transduction. Accordingly, cleavage and phosphorylation play an important role in regulating galectin-3 function via altering its multivalence, localization, and ligand interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Leffler, H., Carlsson, S., Hedlund, M., Qian, Y., & Poirier, F. (2004). Introduction to galectins. Glycoconjugate Journal, 19, 433–440.

    Article  Google Scholar 

  2. Yang, R. Y., Rabinovich, G. A., & Liu, F. T. (2008). Galectins: Structure, function and therapeutic potential. Expert Reviews in Molecular Medicine, 10, e17.

    Article  PubMed  Google Scholar 

  3. Dumic, J., Dabelic, S., & Flögel, M. (2006). Galectin-3: An open-ended story. Biochimica et Biophysica Acta - General Subjects, 1760, 616–635.

    Article  CAS  Google Scholar 

  4. Huflejt, M. E., Turck, C. W., Lindstedt, R., Barondes, S. H., & Leffler, H. (1993). L-29, a soluble lactose-binding lectin, is phosphorylated on serine 6 and serine 12 in vivo and by casein kinase I. Journal of Biological Chemistry, 268, 26712–26718.

    CAS  PubMed  Google Scholar 

  5. Gao, X., Liu, D., Fan, Y., Li, X., Xue, H., Ma, Y., Zhou, Y., & Tai, G. (2012). The two Endocytic pathways mediated by the carbohydrate recognition domain and regulated by the collagen-like domain of galectin-3 in vascular endothelial cells. PloS One, 7, e52430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ochieng, J., Furtak, V., & Lukyanov, P. (2002). Extracellular functions of galectin-3. Glycoconjugate Journal, 19, 527–535.

    Article  CAS  PubMed  Google Scholar 

  7. Menon, R. P., & Hughes, R. C. (1999). Determinants in the N-terminal domains of galectin-3 for secretion by a novel pathway circumventing the endoplasmic reticulum-Golgi complex. European Journal of Biochemistry, 264, 569–576.

    Article  CAS  PubMed  Google Scholar 

  8. Zhu, W. Q., & Ochieng, J. (2001). Rapid release of intracellular galectin-3 from breast carcinoma cells by fetuin. Cancer Research, 61, 1869–1873.

    CAS  PubMed  Google Scholar 

  9. Ahmad, N., Gabius, H. J., Andre, S., Kaltner, H., Sabesan, S., Roy, R., Liu, B. C., Macaluso, F., & Brewer, C. F. (2004). Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. Journal of Biological Chemistry, 279, 10841–10847.

    Article  CAS  PubMed  Google Scholar 

  10. Lepur, A., Salomonsson, E., Nilsson, U. J., & Leffler, H. (2012). Ligand induced galectin-3 protein self-association. Journal of Biological Chemistry, 287, 21751–21756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shimura, T., Takenaka, Y., Tsutsumi, S., Hogan, V., Kikuchi, A., & Raz, A. (2004). Galectin-3, a novel binding partner of beta-catenin. Cancer Research, 64, 6363–6367.

    Article  CAS  PubMed  Google Scholar 

  12. Akahani, S., Nangia-Makker, P., Inohara, H., Kim, H. R. C., & Raz, A. (1997). Galectin-3: A novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Research, 57, 5272–5276.

    CAS  PubMed  Google Scholar 

  13. Shalom-Feuerstein, R., Plowman, S. J., Rotblat, B., Ariotti, N., Tian, T., Hancock, J. F., & Kloog, Y. (2008). K-Ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. Cancer Research, 68, 6608–6616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, F. T., Patterson, R. J., & Wang, J. L. (2002). Intracellular functions of galectins. Biochimica et Biophysica Acta - General Subjects, 1572, 263–273.

    Article  CAS  Google Scholar 

  15. Jensen, O. N. (2004). Modification-specific proteomics: Characterization of post-translational modifications by mass spectrometry. Current Opinion in Chemical Biology, 8, 33–41.

    Article  PubMed  Google Scholar 

  16. Kessenbrock, K., Plaks, V., & Werb, Z. (2010). Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell, 141, 52–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rundhaug, J. E. (2003). Matrix Metalloproteinases, angiogenesis, and cancer. Clinical Cancer Research, 9, 551.

    PubMed  Google Scholar 

  18. Lynch, C. C., & Matrisian, L. M. (2002). Matrix metalloproteinases in tumor-host cell communication. Differentiation, 70, 561–573.

    Article  CAS  PubMed  Google Scholar 

  19. Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 69, 562.

    Article  CAS  PubMed  Google Scholar 

  20. Ochieng, J., Fridman, R., Nangia-Makker, P., Kleiner, D. E., Liotta, L. A., Stetler-Stevenson, W. G., & Raz, A. (1994). Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9. Biochemistry, 33, 14109–14114.

    Article  CAS  PubMed  Google Scholar 

  21. Ochieng, J., Green, B., Evans, S., James, O., & Warfield, P. (1998). Modulation of the biological functions of galectin-3 by matrix metalloproteinases. Biochimica et Biophysica Acta - General Subjects, 1379, 97–106.

    Article  CAS  Google Scholar 

  22. Nangia-Makker, P., Raz, T., Tait, L., Hogan, V., Fridman, R., & Raz, A. (2007). Galectin-3 cleavage: A novel surrogate marker for matrix metalloproteinase activity in growing breast cancers. Cancer Research, 67, 11760–11768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Balan, V., Nangia-Makker, P., Schwartz, A. G., Young, S. J., Tait, L., Hogan, V., Raz, T., Wang, Y., Zeng, Q. Y., Gen, S. W., Guo, Y., Li, H., Abrams, J., Couch, F. J., Lingle, W. L., Lloyd, R. V., Ethier, S. P., Tainsky, M. A., & Raz, A. (2008). Racial disparity in breast cancer and functional germ line mutation in galectin-3 (rs4644): A pilot study. Cancer Research, 68, 10045–10050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nangia-Makker, P., Wang, Y., Raz, T., Tait, L., Balan, V., Hogan, V., & Raz, A. (2010). Cleavage of galectin-3 by matrix metalloproteases induces angiogenesis in breast cancer. International Journal of Cancer. Journal International du Cancer, 127, 2530–2541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ortega, N., Behonick, D. J., Colnot, C., Cooper, D. N. W., & Werb, Z. (2005). Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during Endochondral bone formation. Molecular Biology of the Cell, 16, 3028–3039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dange, M. C., Agarwal, A. K., & Kalraiya, R. D. (2015). Extracellular galectin-3 induces MMP9 expression by activating p38 MAPK pathway via lysosome-associated membrane protein-1 (LAMP1). Molecular and Cellular Biochemistry, 404, 79–86.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Y. G., Kim, S. J., Baek, J. H., Lee, H. W., Jeong, S. Y., & Chun, K. H. (2012). Galectin-3 increases the motility of mouse melanoma cells by regulating matrix metalloproteinase-1 expression. Experimental & Molecular Medicine, 44, 387–393.

    Article  CAS  Google Scholar 

  28. Mauris, J., Woodward, A. M., Cao, Z., Panjwani, N., & Argueso, P. (2014). Molecular basis for MMP9 induction and disruption of epithelial cell–cell contacts by galectin-3. Journal of Cell Science, 127, 3141–3148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Puthenedam, M., Wu, F., Shetye, A., Michaels, A., Rhee, K. J., & Kwon, J. H. (2011). Matrilysin-1 (MMP7) cleaves galectin-3 and inhibits wound healing in intestinal epithelial cells. Inflammatory Bowel Diseases, 17, 260–267.

    Article  PubMed  Google Scholar 

  30. McClung, H. M., Thomas, S. L., Osenkowski, P., Toth, M., Menon, P., Raz, A., Fridman, R., & Rempel, S. A. (2007). SPARC Upregulates MT1-MMP expression, MMP-2 activation, and the secretion and cleavage of galectin-3 in U87MG Glioma cells. Neuroscience Letters, 419, 172–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guevremont, M., Martel-Pelletier, J., Boileau, C., Liu, F., Richard, M., Fernandes, J., Pelletier, J., & Reboul, P. (2004). Galectin-3 surface expression on human adult chondrocytes: A potential substrate for collagenase-3. Annals of the Rheumatic Diseases, 63, 636–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yokoyama, Y., Grunebach, F., Schmidt, S. M., Heine, A., Hantschel, M., Stevanovic, S., Rammensee, H. G., & Brossart, P. (2008). Matrilysin (MMP-7) is a novel broadly expressed tumor antigen recognized by antigen-specific T cells. Clinical Cancer Research, 14, 5503–5511.

    Article  CAS  PubMed  Google Scholar 

  33. Itoh, Y., & Seiki, M. (2006). MT1-MMP: A potent modifier of pericellular microenvironment. Journal of Cellular Physiology, 206, 1–8.

    Article  CAS  PubMed  Google Scholar 

  34. Jones, J. L., Saraswati, S., Block, A. S., Lichti, C. F., Mahadevan, M., & Diekman, A. B. (2010). Galectin-3 is associated with Prostasomes in human semen. Glycoconjugate Journal, 27, 227–236.

    Article  CAS  PubMed  Google Scholar 

  35. Lilja, H. (2003). Biology of prostate-specific antigen. Urology, 62, 27–33.

    Article  PubMed  Google Scholar 

  36. Saraswati, S., Block, A. S., Davidson, M. K., Rank, R. G., Mahadevan, M., & Diekman, A. B. (2011). Galectin-3 is a substrate for prostate specific antigen (PSA) in human seminal plasma. The Prostate, 71, 197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Balan, V., Wang, Y., Nangia-Makker, P., Kho, D., Bajaj, M., Smith, D., Heilbrun, L., Raz, A., & Heath, E. (2013). Galectin-3: A possible complementary marker to the PSA blood test. Oncotarget, 4, 542–549.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rabinovich, G. A., Baum, L. G., Tinari, N., Paganelli, R., Natoli, C., Liu, F. T., & Iacobelli, S. (2002). Galectins and their ligands: Amplifiers, silencers or tuners of the inflammatory response? Trends in Immunology, 23, 313–320.

    Article  CAS  PubMed  Google Scholar 

  39. Hsu, D. K., Chen, H. Y., & Liu, F. T. (2009). Galectin-3 regulates T-cell functions. Immunological Reviews, 230, 114–127.

    Article  CAS  PubMed  Google Scholar 

  40. Debierre-Grockiego, F., Niehus, S., Coddeville, B., Elass, E., Poirier, F., Weingart, R., Schmidt, R. R., Mazurier, J., Guerardel, Y., & Schwarz, R. T. (2010). Binding of toxoplasma gondii glycosylphosphatidylinositols to galectin-3 is required for their recognition by macrophages. Journal of Biological Chemistry, 285, 32744–32750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Van Den Berg, T. K., Honing, H., Franke, N., Van Remoortere, A., Schiphorst, W. E. C. M., Liu, F. T., Deelder, A. M., Cummings, R. D., Hokke, C. H., & Van Die, I. (2004). LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition. Journal of Immunology, 173, 1902–1907.

    Article  CAS  Google Scholar 

  42. Pelletier, I., & Sato, S. (2002). Specific recognition and cleavage of galectin-3 by Leishmania major through species-specific polygalactose epitope. The Journal of Biological Chemistry, 277, 17663–17670.

    Article  CAS  PubMed  Google Scholar 

  43. Yamazaki, K., Kawai, A., Kawaguchi, M., Hibino, Y., Li, F., Sasahara, M., Tsukada, K., & Hiraga, K. (2001). Simultaneous induction of galectin-3 phosphorylated on tyrosine residue, p21WAF1/Cip1/Sdi1, and the proliferating cell nuclear antigen at a distinctive period of repair of hepatocytes injured by CCl4. Biochemical and Biophysical Research Communications, 280, 1077–1084.

    Article  CAS  PubMed  Google Scholar 

  44. Menon, S., Kang, C. M., & Beningo, K. A. (2011). Galectin-3 secretion and tyrosine phosphorylation is dependent on the calpain small subunit, Calpain 4. Biochemical and Biophysical Research Communications, 410, 91–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Balan, V., Nangia-Makker Pratima, P., Jung, Y. S., Wang, Y., & Raz, A. (2010). Galectin-3: A novel substrate for c-Abl kinase. Biochimica et Biophysica Acta - Molecular Cell Research, 1803, 1198–1205.

    Article  CAS  Google Scholar 

  46. Shaul, Y. (2000). C-Abl: Activation and nuclear targets. Cell Death and Differentiation, 7, 10–16.

    Article  CAS  PubMed  Google Scholar 

  47. Li, X., Ma, Q., Wang, J., Liu, X., Yang, Y., Zhao, H., Wang, Y., Jin, Y., Zeng, J., Li, J., Song, L., Li, P., Qian, X., & Cao, C. (2010). C-Abl and Arg tyrosine kinases regulate lysosomal degradation of the oncoprotein galectin-3. Cell Death and Differentiation, 17, 1277–1287.

    Article  CAS  PubMed  Google Scholar 

  48. Mayer, B. J., & Baltimore, D. (1993). Signalling through SH2 and SH3 domains. Trends in Cell Biology, 3, 8–13.

    Article  CAS  PubMed  Google Scholar 

  49. Koch, C. A., Anderson, D., Moran, M. F., Ellis, C., & Pawson, T. (1991). SH2 and SH3 domains: Elements that control interactions of cytoplasmic signaling proteins. Science, 252, 668–674.

    Article  CAS  PubMed  Google Scholar 

  50. Knippschild, U., Gocht, A., Wolff, S., Huber, N., Lohler, J., & Stoter, M. (2005). The casein kinase 1 family: Participation in multiple cellular processes in eukaryotes. Cellular Signalling, 17, 675–689.

    Article  CAS  PubMed  Google Scholar 

  51. Agrwal, N., Cowles, E. A., Anderson, R. L., & Wang, J. L. (1990). Carbohydrate-binding protein 35: Isoelectric points of the polypeptide and a phosphorylated derivative. The Journal of Biological Chemistry, 265, 17706–17712.

    PubMed  Google Scholar 

  52. Mazurek, N., Conklin, J., Byrd, J. C., Raz, A., & Bresalier, R. S. (2000). Phosphorylation of the beta-galactoside-binding protein galectin-3 modulates binding to its ligands. Journal of Biological Chemistry, 275, 36311–36315.

    Article  CAS  PubMed  Google Scholar 

  53. Yoshii, T., Fukumori, T., Honjo, Y., Inohara, H., Kim, H. R. C., & Raz, A. (2002). Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. Journal of Biological Chemistry, 277, 6852–6857.

    Article  PubMed  Google Scholar 

  54. Fukumori, T. (2007). H.O. Kanayama, A. Raz, the role of galectin-3 in cancer drug resistance. Drug Resistance Updates, 10, 101–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim, H. R., Lin, H. M., Biliran, H., & Raz, A. (1999). Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells. Cancer Research, 59, 4148–4154.

    CAS  PubMed  Google Scholar 

  56. Takenaka, Y., Fukumori, T., Yoshii, T., Oka, N., Inohara, H., Hyeong-Reh, C. K., Bresalier, R. S., & Raz, A. (2004). Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Molecular and Cellular Biology, 24, 4395–4406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chiarugi, P., & Giannoni, E. (2008). Anoikis: A necessary death program for anchorage-dependent cells. Biochemical Pharmacology, 76, 1352–1364.

    Article  CAS  PubMed  Google Scholar 

  58. Lee, Y. J., Song, Y. K., Song, J. J., Siervo-Sassi, R. R., Kim, H. R., Li, L., Spitz, D. R., Lokshin, A., & Kim, J. H. (2003). Reconstitution of galectin-3 alters glutathione content and potentiates TRAIL-induced cytotoxicity by dephosphorylation of Akt. Experimental Cell Research, 288, 21–34.

    Article  CAS  PubMed  Google Scholar 

  59. Suliman, A., Lam, A., Datta, R., & Srivastava, R. K. (2001). Intracellular mechanisms of TRAIL: Apoptosis through mitochondrial-dependent and -independent pathways. Oncogene, 20, 2122–2133.

    Article  CAS  PubMed  Google Scholar 

  60. Mazurek, N., Yun, J. S., Liu, K. F., Gilcrease, M. Z., Schober, W., Nangia-Makker, P., Raz, A., & Bresalier, R. S. (2007). Phosphorylated galectin-3 mediates tumor necrosis factor-related apoptosis-inducing ligand signaling by regulating phosphatase and tensin homologue deleted on chromosome 10 in human breast carcinoma cells. Journal of Biological Chemistry, 282, 21337–21348.

    Article  CAS  PubMed  Google Scholar 

  61. Mazurek, N., Sun, Y. J., Price, J. E., Ramdas, L., Schober, W., Nangia-Makker, P., Byrd, J. C., Raz, A., & Bresalier, R. S. (2005). Phosphorylation of galectin-3 contributes to malignant transformation of human epithelial cells via modulation of unique sets of genes. Cancer Research, 65, 10767–10775.

    Article  CAS  PubMed  Google Scholar 

  62. Díez-Revuelta, N., Velasco, S., André, S., Kaltner, H., Kübler, D., Gabius, H. J., & Abad-Rodríguez, J. (2010). Phosphorylation of adhesion- and growth-regulatory human galectin-3 leads to the induction of axonal branching by local membrane L1 and ERM redistribution. Journal of Cell Science, 123, 671–681.

    Article  PubMed  Google Scholar 

  63. Plyte, S. E., Hughes, K., Nikolakaki, E., Pulverer, B. J., & Woodgett, J. R. (1992). Glycogen synthase kinase-3: Functions in oncogenesis and development. Biochimica et Biophysica Acta - Reviews on Cancer, 1114, 147–162.

    Article  CAS  Google Scholar 

  64. Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., & Kikuchi, A. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. The EMBO Journal, 17, 1371–1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rao, T. P., & Kuhl, M. (2010). An updated overview on Wnt signaling pathways: A prelude for more. Circulation Research, 106, 1798–1806.

    Article  CAS  PubMed  Google Scholar 

  66. Shimura, T., Takenaka, Y., Fukumori, T., Tsutsumi, S., Okada, K., Hogan, V., Kikuchi, A., Kuwano, H., & Raz, A. (2005). Implication of galectin-3 in Wnt signaling. Cancer Research, 65, 3535–3537.

    Article  CAS  PubMed  Google Scholar 

  67. Song, S., Mazurek, N., Liu, C., Sun, Y., Ding, Q. Q., Liu, K., Hung, M. C., & Bresalier, R. S. (2009). Galectin-3 mediates nuclear beta-catenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinase-3beta activity. Cancer Research, 69, 1343–1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nusse, R. (2005). Wnt signaling in disease and in development. Cell Research, 15, 28–32.

    Article  CAS  PubMed  Google Scholar 

  69. Yu, L. G., Andrews, N., Zhao, Q., McKean, D., Williams, J. F., Connor, L. J., Gerasimenko, O. V., Hilkens, J., Hirabayashi, J., Kasai, K., & Rhodes, J. M. (2007). Galectin-3 interaction with Thomsen-Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. Journal of Biological Chemistry, 282, 773–781.

    Article  CAS  PubMed  Google Scholar 

  70. Davidson, P. J., Davis, M. J., Patterson, R. J., Ripoche, M. A., Poirier, F., & Wang, J. L. (2002). Shuttling of galectin-3 between the nucleus and cytoplasm. Glycobiology, 12, 329–337.

    Article  CAS  PubMed  Google Scholar 

  71. Fukumori, T., Takenaka, Y., Yoshii, T., Kim, H. R. C., Hogan, V., Inohara, H., Kagawa, S., & Raz, A. (2003). CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Research, 63, 8302–8311.

    CAS  PubMed  Google Scholar 

  72. Hunter, T. (1995). Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling. Cell, 80, 225–236.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junnian Zheng.

Ethics declarations

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81502221), the China Postdoctoral Science Foundation (Grant No. 2016M590504), and the Natural Science Foundation of Jiangsu Province (Grant No. BK20150216, BK20161157), the Jiangsu Province Postdoctoral Science Foundation (Grant No. 1501088B), and the Research Foundation of Xuzhou Medical University (Grant No. D2015009).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Liu, J., Liu, X. et al. Cleavage and phosphorylation: important post-translational modifications of galectin-3. Cancer Metastasis Rev 36, 367–374 (2017). https://doi.org/10.1007/s10555-017-9666-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-017-9666-0

Keywords

Navigation