Skip to main content

Advertisement

Log in

Integrin αvβ6 sets the stage for colorectal cancer metastasis

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The β6 subunit of the αvβ6 integrin heterodimer has long been an enigma in cancer biology though recent research has provided many new insights into its biology. Collectively, these findings include discovery of the transcriptional, translational and cell biological mechanisms by which β6 acts, the identification of the cellular influences β6 exerts upon the cell proteome, the characterisation of multiple β6-centric pro-metastatic signalling systems and the search for pharmacological therapies (industry and academia) targeted against β6. Once expressional restriction is overcome in early colorectal cancer (CRC), epithelial cell surface restricted αvβ6 can physically interact with, and activate, known oncoproteins, and has the potential to enable the cross-talk through non-canonical signal transduction pathways, resulting in the adoption of an invasive/metastatic phenotype. This recent research has identified numerous interconnections and potential feedback loops, highlighting the fact that the expression of the β6 subunit may initiate a cascade of downstream effects on the CRC cell rather than acting through a single mechanism. We here review these recent studies and postulate that the existence of a cell surface uPAR/αvβ6/TGFβ “metastasome” interactome in/on a proportion of colorectal cancer cells, where β6 expression sequesters and activates multiple systems at the invasive front of tumour lesions, promoting cancer metastasis and hence explaining why β6 has been correlated with reduced patient survival in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu, M., Chen, X., Yin, H., Yin, L., Liu, F., Fu, Y., et al. (2015). Cloning and characterization of the human integrin beta6 gene promoter. PloS One, 10(3), e0121439. doi:10.1371/journal.pone.0121439.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Ramos, D. M., But, M., Regezi, J., Schmidt, B. L., Atakilit, A., Dang, D., et al. (2002). Expression of integrin beta 6 enhances invasive behavior in oral squamous cell carcinoma. Matrix Biology, 21(3), 297–307.

    Article  CAS  PubMed  Google Scholar 

  3. Arnaout, M. A., Goodman, S. L., & Xiong, J. P. (2007). Structure and mechanics of integrin-based cell adhesion. Current Opinion in Cell Biology, 19(5), 495–507. doi:10.1016/j.ceb.2007.08.002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Zhang, C., Liu, J., Jiang, X., Haydar, N., Zhang, C., Shan, H., et al. (2013). Modulation of integrin activation and signaling by alpha1/alpha1′-helix unbending at the junction. Journal of Cell Science, 126(Pt 24), 5735–5747. doi:10.1242/jcs.137828.

    Article  CAS  PubMed  Google Scholar 

  5. Campbell, I. D., & Humphries, M. J. (2011). Integrin structure, activation, and interactions. Cold Spring Harbor Perspectives in Biology, 3(3), doi:10.1101/cshperspect.a004994.

  6. Ganguly, K. K., Pal, S., Moulik, S., & Chatterjee, A. (2013). Integrins and metastasis. Cell Adhesion & Migration, 7(3), 251–261. doi:10.4161/cam.23840.

    Article  Google Scholar 

  7. Zaidel-Bar, R., Itzkovitz, S., Ma'ayan, A., Iyengar, R., & Geiger, B. (2007). Functional atlas of the integrin adhesome. Nature Cell Biology, 9(8), 858–867. doi:10.1038/ncb0807-858.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bouaouina, M., Harburger, D. S., & Calderwood, D. A. (2012). Talin and signaling through integrins. Methods in Molecular Biology, 757, 325–347. doi:10.1007/978-1-61779-166-6_20.

    Article  PubMed  CAS  Google Scholar 

  9. Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. Current Opinion in Cell Biology, 18(5), 516–523. doi:10.1016/j.ceb.2006.08.011.

    Article  CAS  PubMed  Google Scholar 

  10. Ahmed, N., Pansino, F., Baker, M., Rice, G., & Quinn, M. (2002). Association between alphavbeta6 integrin expression, elevated p42/44 kDa MAPK, and plasminogen-dependent matrix degradation in ovarian cancer. Journal of Cellular Biochemistry, 84(4), 675–686. doi:10.1002/jcb.10080.

    Article  PubMed  CAS  Google Scholar 

  11. Giancotti, F. G., & Ruoslahti, E. (1999). Integrin signaling. Science, 285(5430), 1028–1032.

    Article  CAS  PubMed  Google Scholar 

  12. Cabodi, S., Di Stefano, P., Leal Mdel, P., Tinnirello, A., Bisaro, B., Morello, V., et al. (2010). Integrins and signal transduction. Advances in Experimental Medicine and Biology, 674, 43–54.

    Article  CAS  PubMed  Google Scholar 

  13. Jones, M. C., Humphries, J. D., Byron, A., Millon-Fremillon, A., Robertson, J., Paul, N. R., et al. (2015). Isolation of integrin-based adhesion complexes. Current Protocols in Cell Biology, 66, 981–9815. doi:10.1002/0471143030.cb0908s66.

    Article  Google Scholar 

  14. Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110(6), 673–687.

    Article  CAS  PubMed  Google Scholar 

  15. Montanez, E., Ussar, S., Schifferer, M., Bosl, M., Zent, R., Moser, M., et al. (2008). Kindlin-2 controls bidirectional signaling of integrins. Genes and Development, 22(10), 1325–1330. doi:10.1101/gad.469408.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Calderwood, D. A., Campbell, I. D., & Critchley, D. R. (2013). Talins and kindlins: partners in integrin-mediated adhesion. Nature Reviews Molecular Cell Biology, 14(8), 503–517. doi:10.1038/nrm3624.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Rognoni, E., Widmaier, M., Jakobson, M., Ruppert, R., Ussar, S., Katsougkri, D., et al. (2014). Kindlin-1 controls Wnt and TGF-beta availability to regulate cutaneous stem cell proliferation. Nature Medicine, 20(4), 350–359. doi:10.1038/nm.3490.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Abram, C. L., & Lowell, C. A. (2009). The ins and outs of leukocyte integrin signaling. Annual Review of Immunology, 27, 339–362. doi:10.1146/annurev.immunol.021908.132554.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Wegener, K. L., Partridge, A. W., Han, J., Pickford, A. R., Liddington, R. C., Ginsberg, M. H., et al. (2007). Structural basis of integrin activation by talin. Cell, 128(1), 171–182. doi:10.1016/j.cell.2006.10.048.

    Article  CAS  PubMed  Google Scholar 

  20. Morse, E. M., Brahme, N. N., & Calderwood, D. A. (2014). Integrin cytoplasmic tail interactions. Biochemistry, 53(5), 810–820. doi:10.1021/bi401596q.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., et al. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359–E386. doi:10.1002/ijc.29210.

    Article  CAS  Google Scholar 

  22. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69–90. doi:10.3322/caac.20107.

    Google Scholar 

  23. Dhanapal, R., Saraswathi, T., & Govind, R. N. (2011). Cancer cachexia. Journal of Oral and Maxillofacial Pathology, 15(3), 257–260. doi:10.4103/0973-029X.86670.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Agrez, M., Chen, A., Cone, R. I., Pytela, R., & Sheppard, D. (1994). The alpha v beta 6 integrin promotes proliferation of colon carcinoma cells through a unique region of the beta 6 cytoplasmic domain. Journal of Cell Biology, 127(2), 547–556.

    Article  CAS  PubMed  Google Scholar 

  25. Hazelbag, S., Kenter, G. G., Gorter, A., Dreef, E. J., Koopman, L. A., Violette, S. M., et al. (2007). Overexpression of the alpha v beta 6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. Journal of Pathology, 212(3), 316–324. doi:10.1002/path.2168.

    Article  CAS  PubMed  Google Scholar 

  26. Ramos, D. M., Dang, D., & Sadler, S. (2009). The role of the integrin alpha v beta6 in regulating the epithelial to mesenchymal transition in oral cancer. Anticancer Research, 29(1), 125–130.

    CAS  PubMed  Google Scholar 

  27. Sun, Q., Sun, F., Wang, B., Liu, S., Niu, W., Liu, E., et al. (2014). Interleukin-8 promotes cell migration through integrin alphavbeta6 upregulation in colorectal cancer. Cancer Letters. doi:10.1016/j.canlet.2014.08.021.

    Google Scholar 

  28. Ahmed, N., Niu, J., Dorahy, D. J., Gu, X., Andrews, S., Meldrum, C. J., et al. (2002). Direct integrin alphavbeta6-ERK binding: implications for tumour growth. Oncogene, 21(9), 1370–1380. doi:10.1038/sj.onc.1205286.

    Article  CAS  PubMed  Google Scholar 

  29. Bates, R. C. (2005). Colorectal cancer progression: integrin alphavbeta6 and the epithelial-mesenchymal transition (EMT). Cell Cycle, 4(10), 1350–1352.

    Article  CAS  PubMed  Google Scholar 

  30. Bates, R. C., Bellovin, D. I., Brown, C., Maynard, E., Wu, B., Kawakatsu, H., et al. (2005). Transcriptional activation of integrin beta6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. Journal of Clinical Investigation, 115(2), 339–347. doi:10.1172/JCI23183.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Binder, M. A. T. M. (2009). Drugs targeting integrins for cancer therapy. Expert Opinion on Drug Discovery, 4(3).

  32. Liu, S., Liang, B., Gao, H., Zhang, F., Wang, B., Dong, X., et al. (2013). Integrin alphavbeta6 as a novel marker for diagnosis and metastatic potential of thyroid carcinoma. Head & Neck Oncology, 5(1), 7.

    Google Scholar 

  33. Bandyopadhyay, A., & Raghavan, S. (2009). Defining the role of integrin alphavbeta6 in cancer. Current Drug Targets, 10(7), 645–652.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Cantor, D., Slapetova, I., Kan, A., McQuade, L. R., & Baker, M. S. (2013). Overexpression of alphavbeta6 integrin alters the colorectal cancer cell proteome in favor of elevated proliferation and a switching in cellular adhesion that increases invasion. Journal of Proteome Research, 12(6), 2477–2490. doi:10.1021/pr301099f.

    Article  CAS  PubMed  Google Scholar 

  35. Ahmed, N., Riley, C., Rice, G. E., Quinn, M. A., & Baker, M. S. (2002). Alpha(v)beta(6) integrin-A marker for the malignant potential of epithelial ovarian cancer. Journal of Histochemistry and Cytochemistry, 50(10), 1371–1380.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, G. Y., Xu, K. S., Pan, Z. Q., Zhang, Z. Y., Mi, Y. T., Wang, J. S., et al. (2008). Integrin alpha v beta 6 mediates the potential for colon cancer cells to colonize in and metastasize to the liver. Cancer Science, 99(5), 879–887. doi:10.1111/j.1349-7006.2008.00762.x.

    Article  CAS  PubMed  Google Scholar 

  37. Peng, C., Gao, H., Niu, Z., Wang, B., Tan, Z., Niu, W., et al. (2014). Integrin alphavbeta6 and transcriptional factor Ets-1 act as prognostic indicators in colorectal cancer. Cell & Bioscience, 4(1), 53. doi:10.1186/2045-3701-4-53.

    Article  CAS  Google Scholar 

  38. Gill, S., Loprinzi, C. L., Sargent, D. J., Thome, S. D., Alberts, S. R., Haller, D. G., et al. (2004). Pooled analysis of fluorouracil-based adjuvant therapy for stage II and III colon cancer: who benefits and by how much? Journal of Clinical Oncology, 22(10), 1797–1806. doi:10.1200/JCO.2004.09.059.

    Article  CAS  PubMed  Google Scholar 

  39. Ahn, S. B., Mohamedali, A., Chan, C., Fletcher, J., Kwun, S. Y., Clarke, C., et al. (2014). Correlations between integrin alphanubeta6 expression and clinico-pathological features in stage B and stage C rectal cancer. PloS One, 9(5), e97248. doi:10.1371/journal.pone.0097248.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Davis, N. C., & Newland, R. C. (1983). Terminology and classification of colorectal adenocarcinoma: the Australian clinico-pathological staging system. Australian and New Zealand Journal of Surgery, 53(3), 211–221.

    Article  CAS  PubMed  Google Scholar 

  41. Enyu, L., Zhengchuan, N., Jiayong, W., Benjia, L., Qi, S., Ruixi, Q., et al. (2015). Integrin beta6 can be translationally regulated by eukaryotic initiation factor 4E: contributing to colonic tumor malignancy. Tumour Biology. doi:10.1007/s13277-015-3348-8.

    PubMed  Google Scholar 

  42. Berkel, H. J., Turbat-Herrera, E. A., Shi, R., & de Benedetti, A. (2001). Expression of the translation initiation factor eIF4E in the polyp-cancer sequence in the colon. Cancer Epidemiology, Biomarkers and Prevention, 10(6), 663–666.

    CAS  PubMed  Google Scholar 

  43. Seki, N., Takasu, T., Mandai, K., Nakata, M., Saeki, H., Heike, Y., et al. (2002). Expression of eukaryotic initiation factor 4E in atypical adenomatous hyperplasia and adenocarcinoma of the human peripheral lung. Clinical Cancer Research, 8(10), 3046–3053.

    CAS  PubMed  Google Scholar 

  44. Nathan, C. O., Carter, P., Liu, L., Li, B. D., Abreo, F., Tudor, A., et al. (1997). Elevated expression of eIF4E and FGF-2 isoforms during vascularization of breast carcinomas. Oncogene, 15(9), 1087–1094. doi:10.1038/sj.onc.1201272.

    Article  CAS  PubMed  Google Scholar 

  45. Niu, Z., Wang, J., Muhammad, S., Niu, W., Liu, E., Peng, C., et al. (2014). Protein expression of eIF4E and integrin alphavbeta6 in colon cancer can predict clinical significance, reveal their correlation and imply possible mechanism of interaction. Cell & Bioscience, 4, 23. doi:10.1186/2045-3701-4-23.

    Article  CAS  Google Scholar 

  46. De Benedetti, A., & Graff, J. R. (2004). eIF-4E expression and its role in malignancies and metastases. Oncogene, 23(18), 3189–3199. doi:10.1038/sj.onc.1207545.

    Article  PubMed  CAS  Google Scholar 

  47. Carroll, M., & Borden, K. L. (2013). The oncogene eIF4E: using biochemical insights to target cancer. Journal of Interferon and Cytokine Research, 33(5), 227–238. doi:10.1089/jir.2012.0142.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Badura, M., Braunstein, S., Zavadil, J., & Schneider, R. J. (2012). DNA damage and eIF4G1 in breast cancer cells reprogram translation for survival and DNA repair mRNAs. Proceedings of the National Academy of Sciences of the United States of America, 109(46), 18767–18772. doi:10.1073/pnas.1203853109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Clarkson, B. K., Gilbert, W. V., & Doudna, J. A. (2010). Functional overlap between eIF4G isoforms in Saccharomyces cerevisiae. PloS One, 5(2), e9114. doi:10.1371/journal.pone.0009114.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Park, E. H., Zhang, F., Warringer, J., Sunnerhagen, P., & Hinnebusch, A. G. (2011). Depletion of eIF4G from yeast cells narrows the range of translational efficiencies genome-wide. BMC Genomics, 12, 68. doi:10.1186/1471-2164-12-68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Ramirez-Valle, F., Braunstein, S., Zavadil, J., Formenti, S. C., & Schneider, R. J. (2008). eIF4GI links nutrient sensing by mTOR to cell proliferation and inhibition of autophagy. Journal of Cell Biology, 181(2), 293–307. doi:10.1083/jcb.200710215.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Silvera, D., Arju, R., Darvishian, F., Levine, P. H., Zolfaghari, L., Goldberg, J., et al. (2009). Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nature Cell Biology, 11(7), 903–908. doi:10.1038/ncb1900.

    Article  CAS  PubMed  Google Scholar 

  53. Tu, L., Liu, Z., He, X., He, Y., Yang, H., Jiang, Q., et al. (2010). Over-expression of eukaryotic translation initiation factor 4 gamma 1 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma. Molecular Cancer, 9, 78. doi:10.1186/1476-4598-9-78.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Comtesse, N., Keller, A., Diesinger, I., Bauer, C., Kayser, K., Huwer, H., et al. (2007). Frequent overexpression of the genes FXR1, CLAPM1 and EIF4G located on amplicon 3q26-27 in squamous cell carcinoma of the lung. International Journal of Cancer, 120(12), 2538–2544. doi:10.1002/ijc.22585.

    Article  CAS  Google Scholar 

  55. Uhlen, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., et al. (2015). Proteomics. Tissue-based map of the human proteome. Science, 347(6220), 1260419. doi:10.1126/science.1260419.

    Article  PubMed  CAS  Google Scholar 

  56. Koistinen, P., & Heino, J. (2002). The selective regulation of alpha Vbeta 1 integrin expression is based on the hierarchical formation of alpha V-containing heterodimers. Journal of Biological Chemistry, 277(27), 24835–24841. doi:10.1074/jbc.M203149200.

    Article  CAS  PubMed  Google Scholar 

  57. Koivisto, L., Grenman, R., Heino, J., & Larjava, H. (2000). Integrins alpha5beta1, alphavbeta1, and alphavbeta6 collaborate in squamous carcinoma cell spreading and migration on fibronectin. Experimental Cell Research, 255(1), 10–17. doi:10.1006/excr.1999.4769.

    Article  CAS  PubMed  Google Scholar 

  58. Munger, J. S., Huang, X., Kawakatsu, H., Griffiths, M. J., Dalton, S. L., Wu, J., et al. (1999). The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell, 96(3), 319–328.

    Article  CAS  PubMed  Google Scholar 

  59. Busk, M., Pytela, R., & Sheppard, D. (1992). Characterization of the integrin alpha v beta 6 as a fibronectin-binding protein. Journal of Biological Chemistry, 267(9), 5790–5796.

    CAS  PubMed  Google Scholar 

  60. Prieto, A. L., Edelman, G. M., & Crossin, K. L. (1993). Multiple integrins mediate cell attachment to cytotactin/tenascin. Proceedings of the National Academy of Sciences of the United States of America, 90(21), 10154–10158.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Huang, X., Wu, J., Spong, S., & Sheppard, D. (1998). The integrin alphavbeta6 is critical for keratinocyte migration on both its known ligand, fibronectin, and on vitronectin. Journal of Cell Science, 111(Pt 15), 2189–2195.

    CAS  PubMed  Google Scholar 

  62. Sheppard, D. (2005). Integrin-mediated activation of latent transforming growth factor beta. Cancer and Metastasis Reviews, 24(3), 395–402. doi:10.1007/s10555-005-5131-6.

    Article  CAS  PubMed  Google Scholar 

  63. Annes, J. P., Rifkin, D. B., & Munger, J. S. (2002). The integrin alphaVbeta6 binds and activates latent TGFbeta3. FEBS Letters, 511(1-3), 65–68.

    Article  CAS  PubMed  Google Scholar 

  64. Singh, A., Greninger, P., Rhodes, D., Koopman, L., Violette, S., Bardeesy, N., et al. (2009). A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell, 15(6), 489–500. doi:10.1016/j.ccr.2009.03.022.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Kang, H., Escudero-Esparza, A., Douglas-Jones, A., Mansel, R. E., & Jiang, W. G. (2009). Transcript analyses of stromal cell derived factors (SDFs): SDF-2, SDF-4 and SDF-5 reveal a different pattern of expression and prognostic association in human breast cancer. International Journal of Oncology, 35(1), 205–211.

    PubMed  Google Scholar 

  66. Wang, B., Wang, W., Niu, W., Liu, E., Liu, X., Wang, J., et al. (2014). SDF-1/CXCR4 axis promotes directional migration of colorectal cancer cells through upregulation of integrin alphavbeta6. Carcinogenesis, 35(2), 282–291. doi:10.1093/carcin/bgt331.

    Article  PubMed  CAS  Google Scholar 

  67. Engl, T., Relja, B., Marian, D., Blumenberg, C., Muller, I., Beecken, W. D., et al. (2006). CXCR4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia, 8(4), 290–301. doi:10.1593/neo.05694.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Jones, J., Marian, D., Weich, E., Engl, T., Wedel, S., Relja, B., et al. (2007). CXCR4 chemokine receptor engagement modifies integrin dependent adhesion of renal carcinoma cells. Experimental Cell Research, 313(19), 4051–4065. doi:10.1016/j.yexcr.2007.07.001.

    Article  CAS  PubMed  Google Scholar 

  69. Xue, B., Wu, W., Huang, K., Xie, T., Xu, X., Zhang, H., et al. (2013). Stromal cell-derived factor-1 (SDF-1) enhances cells invasion by alphavbeta6 integrin-mediated signaling in ovarian cancer. Molecular and Cellular Biochemistry, 380(1-2), 177–184. doi:10.1007/s11010-013-1671-1.

    Article  CAS  PubMed  Google Scholar 

  70. Fedele, C., Singh, A., Zerlanko, B. J., Iozzo, R. V., & Languino, L. R. (2015). The alphavbeta6 integrin is transferred intercellularly via exosomes. Journal of Biological Chemistry, 290(8), 4545–4551. doi:10.1074/jbc.C114.617662.

    Article  CAS  PubMed  Google Scholar 

  71. Van Cutsem, E., & Costa, F. (2005). Progress in the adjuvant treatment of colon cancer: has it influenced clinical practice? JAMA, 294(21), 2758–2760. doi:10.1001/jama.294.21.2758.

    Article  PubMed  Google Scholar 

  72. Van Cutsem, E., Oliveira, J., & Group, E. G. W. (2009). Primary colon cancer: ESMO clinical recommendations for diagnosis, adjuvant treatment and follow-up. Annals of Oncology, 20(Suppl 4), 49–50. doi:10.1093/annonc/mdp126.

    PubMed  Google Scholar 

  73. Liu, S., Wang, J., Niu, W., Liu, E., Wang, J., Peng, C., et al. (2013). The beta6-integrin-ERK/MAP kinase pathway contributes to chemo resistance in colon cancer. Cancer Letters, 328(2), 325–334. doi:10.1016/j.canlet.2012.10.004.

    Article  CAS  PubMed  Google Scholar 

  74. Liang, B., Shahbaz, M., Wang, Y., Gao, H., Fang, R., Niu, Z., et al. (2015). Integrinbeta6-targeted immunoliposomes mediate tumor-specific drug delivery and enhance therapeutic efficacy in colon carcinoma. Clinical Cancer Research, 21(5), 1183–1195. doi:10.1158/1078-0432.CCR-14-1194.

    Article  CAS  PubMed  Google Scholar 

  75. Zhao, Y. Z., Dai, D. D., Lu, C. T., Chen, L. J., Lin, M., Shen, X. T., et al. (2013). Epirubicin loaded with propylene glycol liposomes significantly overcomes multidrug resistance in breast cancer. Cancer Letters, 330(1), 74–83. doi:10.1016/j.canlet.2012.11.031.

    Article  CAS  PubMed  Google Scholar 

  76. Eberlein, C., Kendrew, J., McDaid, K., Alfred, A., Kang, J. S., Jacobs, V. N., et al. (2013). A human monoclonal antibody 264RAD targeting alphavbeta6 integrin reduces tumour growth and metastasis, and modulates key biomarkers in vivo. Oncogene, 32(37), 4406–4416. doi:10.1038/onc.2012.460.

    Article  CAS  PubMed  Google Scholar 

  77. Moore, K. M., Thomas, G. J., Duffy, S. W., Warwick, J., Gabe, R., Chou, P., et al. (2014). Therapeutic targeting of integrin alphavbeta6 in breast cancer. Journal of the National Cancer Institute, 106(8), doi:10.1093/jnci/dju169.

  78. Lee, C., Lee, C., Lee, S., Siu, A., & Ramos, D. M. (2014). The cytoplasmic extension of the integrin beta6 subunit regulates epithelial-to-mesenchymal transition. Anticancer Research, 34(2), 659–664.

    CAS  PubMed  Google Scholar 

  79. Weinacker, A., Chen, A., Agrez, M., Cone, R. I., Nishimura, S., Wayner, E., et al. (1994). Role of the integrin alpha v beta 6 in cell attachment to fibronectin. Heterologous expression of intact and secreted forms of the receptor. Journal of Biological Chemistry, 269(9), 6940–6948.

    CAS  PubMed  Google Scholar 

  80. Cox, G., Steward, W. P., & O'Byrne, K. J. (1999). The plasmin cascade and matrix metalloproteinases in non-small cell lung cancer. Thorax, 54(2), 169–179.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Ahn, S. B., Mohamedali, A., Anand, S., Cheruku, H. R., Birch, D., Sowmya, G., et al. (2014). Characterization of the interaction between heterodimeric alphavbeta6 integrin and urokinase plasminogen activator receptor (uPAR) using functional proteomics. Journal of Proteome Research. doi:10.1021/pr500849x.

    PubMed Central  Google Scholar 

  82. Pepper, M. S. (2001). Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(7), 1104–1117.

    Article  CAS  PubMed  Google Scholar 

  83. Dutta, A., Li, J., Fedele, C., Sayeed, A., Singh, A., Violette, S. M., et al. (2015). alphavbeta6 integrin is required for TGFbeta1-mediated matrix metalloproteinase2 expression. Biochemistry Journal, 466(3), 525–536. doi:10.1042/BJ20140698.

    Article  CAS  Google Scholar 

  84. Dang, D., Yang, Y., Li, X., Atakilit, A., Regezi, J., Eisele, D., et al. (2004). Matrix metalloproteinases and TGFbeta1 modulate oral tumor cell matrix. Biochemical and Biophysical Research Communications, 316(3), 937–942. doi:10.1016/j.bbrc.2004.02.143.

    Article  CAS  PubMed  Google Scholar 

  85. Allen, M. D., Thomas, G. J., Clark, S. E., Dawoud, M. M., Vallath, S., Payne, S. J., et al. (2013). Altered microenvironment promotes progression of pre-invasive breast cancer: myoepithelial expression of alphavbeta6 integrin in DCIS identifies high-risk patients and predicts recurrence. Clinical Cancer Research. doi:10.1158/1078-0432.CCR-13-1504.

    Google Scholar 

  86. Saldanha, R. G., Molloy, M. P., Bdeir, K., Cines, D. B., Song, X., Uitto, P. M., et al. (2007). Proteomic identification of lynchpin urokinase plasminogen activator receptor protein interactions associated with epithelial cancer malignancy. Journal of Proteome Research, 6(3), 1016–1028. doi:10.1021/pr060518n.

    Article  CAS  PubMed  Google Scholar 

  87. Sidenius, N., & Blasi, F. (2003). The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer and Metastasis Reviews, 22(2-3), 205–222.

    Article  CAS  PubMed  Google Scholar 

  88. Fishman, D. A., Kearns, A., Larsh, S., Enghild, J. J., & Stack, M. S. (1999). Autocrine regulation of growth stimulation in human epithelial ovarian carcinoma by serine-proteinase-catalysed release of the urinary-type-plasminogen-activator N-terminal fragment. Biochemistry Journal, 341(Pt 3), 765–769.

    Article  CAS  Google Scholar 

  89. Xiong, J. P., Mahalingham, B., Alonso, J. L., Borrelli, L. A., Rui, X., Anand, S., et al. (2009). Crystal structure of the complete integrin alphaVbeta3 ectodomain plus an alpha/beta transmembrane fragment. Journal of Cell Biology, 186(4), 589–600. doi:10.1083/jcb.200905085.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Sowmya, G., Khan, J. M., Anand, S., Ahn, S. B., Baker, M. S., & Ranganathan, S. (2014). A site for direct integrin alphavbeta6.uPAR interaction from structural modelling and docking. Journal of Structural Biology. doi:10.1016/j.jsb.2014.01.001.

    PubMed  Google Scholar 

  91. Weibrecht, I., Leuchowius, K. J., Clausson, C. M., Conze, T., Jarvius, M., Howell, W. M., et al. (2010). Proximity ligation assays: a recent addition to the proteomics toolbox. Expert Review of Proteomics, 7(3), 401–409. doi:10.1586/epr.10.10.

    Article  CAS  PubMed  Google Scholar 

  92. Thymiakou, E., & Episkopou, V. (2011). Detection of signaling effector-complexes downstream of bmp4 using PLA, a proximity ligation assay. Journal of Visualized Experiments, (49), doi:10.3791/2631.

  93. Blasi, F., & Sidenius, N. (2009). The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling. FEBS Letters. doi:10.1016/j.febslet.2009.12.039.

    PubMed  Google Scholar 

  94. Blasi, F., & Carmeliet, P. (2002). uPAR: a versatile signalling orchestrator. Nature Reviews Molecular Cell Biology, 3(12), 932–943. doi:10.1038/nrm977.

    Article  CAS  PubMed  Google Scholar 

  95. Annes, J. P., Chen, Y., Munger, J. S., & Rifkin, D. B. (2004). Integrin alphaVbeta6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1. Journal of Cell Biology, 165(5), 723–734. doi:10.1083/jcb.200312172.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Klass, B. R., Grobbelaar, A. O., & Rolfe, K. J. (2009). Transforming growth factor beta1 signalling, wound healing and repair: a multifunctional cytokine with clinical implications for wound repair, a delicate balance. Postgraduate Medical Journal, 85(999), 9–14. doi:10.1136/pgmj.2008.069831.

    Article  CAS  PubMed  Google Scholar 

  97. Zambruno, G., Marchisio, P. C., Marconi, A., Vaschieri, C., Melchiori, A., Giannetti, A., et al. (1995). Transforming growth factor-beta 1 modulates beta 1 and beta 5 integrin receptors and induces the de novo expression of the alpha v beta 6 heterodimer in normal human keratinocytes: implications for wound healing. Journal of Cell Biology, 129(3), 853–865.

    Article  CAS  PubMed  Google Scholar 

  98. Van Aarsen, L. A., Leone, D. R., Ho, S., Dolinski, B. M., McCoon, P. E., LePage, D. J., et al. (2008). Antibody-mediated blockade of integrin alpha v beta 6 inhibits tumor progression in vivo by a transforming growth factor-beta-regulated mechanism. Cancer Research, 68(2), 561–570. doi:10.1158/0008-5472.CAN-07-2307.

    Article  PubMed  CAS  Google Scholar 

  99. Dutta, A., Li, J., Lu, H., Akech, J., Pratap, J., Wang, T., et al. (2014). Integrin alphavbeta6 promotes an osteolytic program in cancer cells by upregulating MMP2. Cancer Research, 74(5), 1598–1608. doi:10.1158/0008-5472.CAN-13-1796.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Khan, S. A., Joyce, J., & Tsuda, T. (2012). Quantification of active and total transforming growth factor-beta levels in serum and solid organ tissues by bioassay. BMC Research Notes, 5, 636. doi:10.1186/1756-0500-5-636.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Leipnitz, G., Miyashita, C., Heiden, M., von Blohn, G., Kohler, M., & Wenzel, E. (1988). Reference values and variability of plasminogen in healthy blood donors and its relation to parameters of the fibrinolytic system. Haemostasis, 18(Suppl 1), 61–68.

    PubMed  Google Scholar 

  102. Dvorak, H. F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. New England Journal of Medicine, 315(26), 1650–1659. doi:10.1056/NEJM198612253152606.

    Article  CAS  PubMed  Google Scholar 

  103. Teicher, B. A., & Fricker, S. P. (2010). CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clinical Cancer Research, 16(11), 2927–2931. doi:10.1158/1078-0432.CCR-09-2329.

    Article  CAS  PubMed  Google Scholar 

  104. Hoesel, B., & Schmid, J. A. (2013). The complexity of NF-kappaB signaling in inflammation and cancer. Molecular Cancer, 12, 86. doi:10.1186/1476-4598-12-86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Agarwal, E., Brattain, M. G., & Chowdhury, S. (2013). Cell survival and metastasis regulation by Akt signaling in colorectal cancer. Cellular Signalling, 25(8), 1711–1719. doi:10.1016/j.cellsig.2013.03.025.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Roy, H. K., Olusola, B. F., Clemens, D. L., Karolski, W. J., Ratashak, A., Lynch, H. T., et al. (2002). AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis. Carcinogenesis, 23(1), 201–205.

    Article  CAS  PubMed  Google Scholar 

  107. Bravou, V., Klironomos, G., Papadaki, E., Taraviras, S., & Varakis, J. (2006). ILK over-expression in human colon cancer progression correlates with activation of beta-catenin, down-regulation of E-cadherin and activation of the Akt-FKHR pathway. Journal of Pathology, 208(1), 91–99. doi:10.1002/path.1860.

    Article  CAS  PubMed  Google Scholar 

  108. Latella, G., Vetuschi, A., Sferra, R., Speca, S., & Gaudio, E. (2013). Localization of alphanubeta6 integrin-TGF-beta1/Smad3, mTOR and PPARgamma in experimental colorectal fibrosis. European Journal of Histochemistry, 57(4), e40. doi:10.4081/ejh.2013.e40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Francipane, M. G., & Lagasse, E. (2014). mTOR pathway in colorectal cancer: an update. Oncotarget, 5(1), 49–66.

    Article  PubMed Central  PubMed  Google Scholar 

  110. Arcaro, A., & Guerreiro, A. S. (2007). The phosphoinositide 3-kinase pathway in human cancer: genetic alterations and therapeutic implications. Current Genomics, 8(5), 271–306. doi:10.2174/138920207782446160.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Su, C. C., Lin, Y. P., Cheng, Y. J., Huang, J. Y., Chuang, W. J., Shan, Y. S., et al. (2007). Phosphatidylinositol 3-kinase/Akt activation by integrin-tumor matrix interaction suppresses Fas-mediated apoptosis in T cells. Journal of Immunology, 179(7), 4589–4597.

    Article  CAS  Google Scholar 

  112. Fleming, N. I., Jorissen, R. N., Mouradov, D., Christie, M., Sakthianandeswaren, A., Palmieri, M., et al. (2013). SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Research, 73(2), 725–735. doi:10.1158/0008-5472.CAN-12-2706.

    Article  CAS  PubMed  Google Scholar 

  113. Xie, W., Rimm, D. L., Lin, Y., Shih, W. J., & Reiss, M. (2003). Loss of Smad signaling in human colorectal cancer is associated with advanced disease and poor prognosis. Cancer Journal, 9(4), 302–312.

    Article  CAS  Google Scholar 

  114. Najdi, R., Holcombe, R. F., & Waterman, M. L. (2011). Wnt signaling and colon carcinogenesis: beyond APC. Journal of Carcinogenesis, 10, 5. doi:10.4103/1477-3163.78111.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Wang, S., Liu, Z., Wang, L., & Zhang, X. (2009). NF-kappaB signaling pathway, inflammation and colorectal cancer. Cellular and molecular immunology, 6(5), 327–334. doi:10.1038/cmi.2009.43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Azare, J., Leslie, K., Al-Ahmadie, H., Gerald, W., Weinreb, P. H., Violette, S. M., et al. (2007). Constitutively activated Stat3 induces tumorigenesis and enhances cell motility of prostate epithelial cells through integrin beta 6. Molecular and Cellular Biology, 27(12), 4444–4453. doi:10.1128/MCB.02404-06.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All authors have made an academic contribution to the preparation of this review and have given approval to the final version of this manuscript. The authors declare no actual or potential conflicts of interest, including any financial, personal or other relationships with other people or organisations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Baker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantor, D.I., Cheruku, H.R., Nice, E.C. et al. Integrin αvβ6 sets the stage for colorectal cancer metastasis. Cancer Metastasis Rev 34, 715–734 (2015). https://doi.org/10.1007/s10555-015-9591-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-015-9591-z

Keywords

Navigation