Skip to main content

Advertisement

Log in

Molecular aberrations, targeted therapy, and renal cell carcinoma: current state-of-the-art

  • Clinical
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Renal cell carcinoma (RCC) is among the most prevalent malignancies in the USA. Most RCCs are sporadic, but hereditary syndromes associated with RCC account for 2–3 % of cases and include von Hippel-Lindau, hereditary leiomyomatosis, Birt-Hogg-Dube, tuberous sclerosis, hereditary papillary RCC, and familial renal carcinoma. In the past decade, our understanding of the genetic mutations associated with sporadic forms of RCC has increased considerably, with the most common mutations in clear cell RCC seen in the VHL, PBRM1, BAP1, and SETD2 genes. Among these, BAP1 mutations are associated with aggressive disease and decreased survival. Several targeted therapies for advanced RCC have been approved and include sunitinib, sorafenib, pazopanib, axitinib (tyrosine kinase inhibitors (TKIs) with anti-vascular endothelial growth factor (VEGFR) activity), everolimus, and temsirolimus (TKIs that inhibit mTORC1, the downstream part of the PI3K/AKT/mTOR pathway). High-dose interleukin 2 (IL-2) immunotherapy and the combination of bevacizumab plus interferon-α are also approved treatments. At present, there are no predictive genetic markers to direct therapy for RCC, perhaps because the vast majority of trials have been evaluated in unselected patient populations, with advanced metastatic disease. This review will focus on our current understanding of the molecular genetics of RCC, and how this may inform therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel, R., Naishadham, D., & Jemal, A. (2012). Cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 62, 10–29.

    Google Scholar 

  2. Cohen, H. T., & McGovern, F. (2005). Renal-cell carcinoma. New England Journal of Medicine, 353, 2477–2490.

    CAS  PubMed  Google Scholar 

  3. Lopez-Beltran, A., Carrasco, J. C., Cheng, L., Scarpelli, M., Kirkali, Z., & Montironi, R. (2009). 2009 update on the classification of renal epithelial tumors in adults. International Journal of Urology, 16, 432–443.

    PubMed  Google Scholar 

  4. Albiges, L., Molinie, V., & Escudier, B. (2012). Non-clear cell renal cell carcinoma: does the mammalian target of rapamycin represent a rational therapeutic target? The Oncologist, 17, 1051–1062.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Rini, B. I., Campbell, S. C., & Escudier, B. (2009). Renal cell carcinoma. Lancet, 373, 1119–1132.

    CAS  PubMed  Google Scholar 

  6. Forbes, S. A., Bindal, N., Bamford, S., Cole, C., Kok, C. Y., Beare, D., et al. (2011). COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Research, 39, D945–D950. doi:10.1093/nar/gkq929.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Nickerson, M. L., Jaeger, E., Yangu, S., Dorocher, J. A., Mahurakar, S., Zaridze, D., et al. (2008). Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clinical Cancer Research, 14, 4726–4734.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Kim, W. Y., & Kaelin, W. G. (2004). Role of VHL gene mutation in human cancer. Journal of Clinical Oncology, 22, 4991–5004.

    CAS  PubMed  Google Scholar 

  9. Varela, I., Tarpey, P., Raine, K., Huang, D., Ong, C. K., Stephens, P., et al. (2011). Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal cell carcinoma. Nature, 469, 539–542.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Duns, G., Hofstra, R. M., Sietzema, J. G., Hollema, H., vanDuivenbode, I., Kuik, A., et al. (2012). Targeted exome sequencing in clear cell renal cell carcinoma tumors suggests aberrant chromatin regulation as a crucial step in ccRCC development. Human Mutation, 33, 1059–1062.

    CAS  PubMed  Google Scholar 

  11. Hakimi, A. A., Ostrovnaya, I., Reva, B., Schultz, N., Chen, Y.-B., Gonen, M., et al. (2013). Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clinical Cancer Research. doi:10.1158/1078-0432.CCR-12-3886.

    PubMed Central  PubMed  Google Scholar 

  12. Pena-Llopis, S., Vega-Rubin-de-Celis, S., Liao, A., Leng, N., Pavia-Jimenez, A., Wang, S., et al. (2012). BAP1 loss defines a new class of renal cell carcinoma. Nature Genetics, 44, 751–759.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Dalgliesh, G. L., Furge, K., Greenman, C., Chen, L., Bignell, G., Butler, A., et al. (2010). Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature, 463, 360–363.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Hakimi, A. A., Chen, Y.-B., Wren, J., Gonen, M., Abdel-Wahab, O., Heguy, A., et al. (2013). Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. European Urology, 63, 848–854.

    PubMed Central  PubMed  Google Scholar 

  15. Duns, G., van den Berg, E., van Duivenbode, I., Osinga, J., Hollema, H., Hofstra, R. M., et al. (2010). Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Research, 70, 4287–4291.

    CAS  PubMed  Google Scholar 

  16. Guo, G., Gui, Y., Gao, S., Tang, A., Hu, X., Huang, Y., et al. (2012). Frequent mutation of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nature Genetics, 44, 17–19.

    CAS  Google Scholar 

  17. Zhang, X., Xu, R., Zhu, B., Yang, X., Ding, X., Duan, S., et al. (2007). Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development, 134, 901–908.

    CAS  PubMed  Google Scholar 

  18. Muller, P. A. J., & Vousden, K. H. (2013). p53 mutations in cancer. Nature Cell Biology, 15, 2–8.

    CAS  PubMed  Google Scholar 

  19. Niu, X., Zhang, T., Liao, L., Zhou, L., Linder, D., Zhou, M., et al. (2012). The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene, 31, 776–786.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Li, W.-D., Li, Q. R., Xu, S. N., Wei, F. J., Ye, Z. J., Cheng, J. K., et al. (2013). Exome sequencing identifies an MLL3 gene germ line mutation in a pedigree of colorectal cancer and acute myeloid leukemia. Blood, 121, 1478–1479.

    CAS  PubMed  Google Scholar 

  21. Liu, P., Morrison, C., Wang, L., Xiong, D., Vedell, P., Cui, P., et al. (2012). Identification of somatic mutations in non-small cell lung carcinomas using whole-exome sequencing. Carcinogenesis, 33, 1270–1276.

    PubMed Central  PubMed  Google Scholar 

  22. Mayers, C. M., Wadell, J., McLean, K., Venere, M., Malik, M., Shibata, T., et al. (2010). The rho guanine nucleotide exchange factor AKAP13 (BRX) is essential for cardiac development in mice. Journal of Biological Chemistry, 285, 12344–12354.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Xu, X., Hou, Y., Yin, X., Bao, L., Tang, A., Song, L., et al. (2012). Single-cell exome sequencing reveals single nucleotide mutation characteristics of a kidney tumor. Cell, 148, 886–895.

    CAS  PubMed  Google Scholar 

  24. Shankar, J., Messenberg, A., Chan, J., Underhill, T. M., Foster, L. J., & Nabi, I. R. (2010). Pseudopodial actin dynamics control epithelia-mesenchymal transition in metastatic cancer cells. Cancer Research, 70, 3780–3790.

    CAS  PubMed  Google Scholar 

  25. Berghs, S., Aggujaro, D., Dirkx, R., Maksimova, E., Stabach, P., Hermel, J. M., et al. (2000). Beta IV spectrin, a new spectrin localized at axon initial segments and nodes of ranvier in central and peripheral nervous system. Journal of Cell Biology, 151, 985–1002.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Robinson, R., Carpenter, D., Shaw, M.-A., Halsall, J., & Hopkins, P. (2006). Mutation in RYR1 in malignant hyperthermia and central core disease. Human Mutation, 27, 977–989.

    CAS  PubMed  Google Scholar 

  27. Carlsson, E., Ranki, A., Sipila, L., Karenko, L., Abdel-Rahman, W., Ovaska, K., et al. (2012). Potential role of a navigator gene NAV3 in colorectal cancer. British Journal of Cancer, 106, 517–524.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Lamason, R., McCully, R., Lew, S., & Pomerantz, J. (2010). Oncogenic CARD11 mutation induce hyperactive signaling by disrupting autoinhibition by the PKC-responsive inhibitory domain. Biochemistry, 38, 8240–8250.

    Google Scholar 

  29. Gandhi, P. N., Chen, S. G., & Wilson-Delfosse, A. L. (2009). Leucine-rich repeat kinase 2 (LRRK2): a key player in the pathogenesis of Parkinson’s disease. Journal of Neuroscience Research, 87, 1283–1295.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Sansal, I., & Sellers, W. R. (2004). The biology and clinical relevance of the PTEN tumor suppressor pathway. Journal of Clinical Oncology, 22, 2954–2963.

    CAS  PubMed  Google Scholar 

  31. Guo, C., Chang, C.-C., Wortham, M., Chen, L. H., Kernagis, D. H., Qin, X., et al. (2012). Global indentification of MLL2-targeted local reveals MLL2’s role in diverse signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 109, 17603–17608.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Karakas, B., Bachman, K., & Park, B. (2006). Mutation of the PIK3CA oncogene in human cancers. British Journal of Cancer, 94, 455–459.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Lee, J., & Paull, T. (2007). Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene, 26, 7741–7748.

    CAS  PubMed  Google Scholar 

  34. Sehrawat, S., Emandez, T., Culler, X., Takahashi, M., Ono, Y., Komarova, Y., et al. (2011). AKAP9 regulation of microtubule dynamics promotes Epac-1 induced endothelial barrier properties. Blood, 117, 708–718.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Walters, J. T. R., Corvin, A., Owen, M. J., Williams, H., Dragovic, M., Quinn, E. M., et al. (2010). Psychosis susceptibility gene ZNF804A and cognitive performance in schizophrenia. Archives of General Psychiatry, 67, 692–700.

    CAS  PubMed  Google Scholar 

  36. Huang, J., & Manning, B. D. (2008). The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochemistry Journal, 412, 179–190.

    CAS  Google Scholar 

  37. Sato, D., Lionel, A. C., Leblond, C. S., Prasad, A., Pinto, D., Walker, S., et al. (2012). SHANK1 deletions in males with autism spectrum disorder. American Journal of Human Genetics, 90, 879–887.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Charfi, C., Voisin, V., Levros, L. C., Edouard, E., & Rassert, E. (2011). Gene profiling of Graffi murine leukemia virus-induced lymphoid leukemias: identification of leukemia markers and Fmn2 as a potential oncogene. Blood, 117, 1899–1910.

    CAS  PubMed  Google Scholar 

  39. Akamatsu, S., Takata, R., Haiman, C. A., Takahashi, A., Inoue, T., Kubo, M., et al. (2012). Common variants at 11q12, 10q26, and 3p11.2 are associated with protease cancer susceptibility in Japanese. Nature Genetics, 44, 426–430.

    CAS  PubMed  Google Scholar 

  40. Hanson, D., Murray, P., Black, G., & Clayton, P. (2011). The genetics of 3-M syndrome: unravelling a potential new regulatory growth pathway. Hormone Research in Pædiatrics, 76, 369–378.

    CAS  PubMed  Google Scholar 

  41. McDaneld, T. G., & Spurlock, D. (2008). Ankyrin repeat and suppressor of cytokine signaling (SOCS) box-containing protein (ASB) 15 alters differentiation of mouse C2C12 myoblasts and phosphorylation of mitogen-activated protein kinase and Akt. Journal of Animal Science, 86, 2897–2902.

    CAS  PubMed  Google Scholar 

  42. Lahoz, A., & Hall, A. (2012). A tumor suppressor role for srGAP3 in mammary epithelial cells. Oncogene. doi:10.1038/onc.2012.489.

    PubMed  Google Scholar 

  43. Rimkunas, V. M., Crosby, K., Li, D., Hu, Y., Kelly, M. E., Gu, T. L., et al. (2012). Analysis of receptor tyrosine kinase ROS1- positive tumors in non-small cell lung cancer: identification of a FIG-ROS1 fusion. Clinical Cancer Research, 18, 4449–4457.

    CAS  PubMed  Google Scholar 

  44. Wu, R.-C., Wang, T.-L., & Shih, I.-M. (2014). The emerging roles of ARID1A in tumor suppression. Cancer Biology and Therapy, 15, 655–664.

    PubMed  Google Scholar 

  45. Witkiewicz, A. K., Knudsen, K. E., Dicker, A. P., & Knudsen, E. S. (2011). The meaning of of p16(ink4a) expression in tumors: functional significance, clinical associations, and future developments. Cell Cycle, 15, 2497–2503.

    Google Scholar 

  46. Liu, W., Morito, D., Takashima, S., Mineharu, Y., Kobayashi, H., Hitomi, T., et al. (2011). Identification of RNF213 as susceptibility gene for Moyamoya disease and its possible role in vascular development. PLoS One, 6, e22542.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Mandai, K., Rikitake, Y., Shimono, Y., & Takai, Y. (2013). Afadin/AF-6 and canoe: roles in cell adhesion and beyond. Progress in Molecular Biology and Translational Science, 116, 433–454.

    CAS  PubMed  Google Scholar 

  48. Cheung, N., So, C. W., Yam, J. W. P., So, C. K. C., Poon, R. Y. C., Jin, D. Y., et al. (2004). Subcellular localization of EEN/endophilin A2, a fusion partner gene in leukaemia. Biochemistry Journal, 383, 27–35.

    CAS  Google Scholar 

  49. Meissner, B., Kridel, R., Lim, R., Rogic, S., Tse, K., Scott, D. W., et al. (2013). The E3 ubiquitin ligase UBR5 is recurrently mutated in mantle cell lymphoma. Blood, 121, 3161–3164.

    CAS  PubMed  Google Scholar 

  50. Ye, Y., Pringle, L., Lau, A., Riquelme, D., Wang, H., Jiang, T., et al. (2010). TRE17/USP6 oncogene translocated in aneurysmal bone cyst induces matrix metalloproteinase production via activation of NK-kappa beta. Oncogene, 29(3619–29).

  51. vanHaaften, G., Dalgliesh, G. L., Davies, H., Chen, L., Bignell, G., Greenman, C., et al. (2009). Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nature Genetics, 41, 521–523.

    CAS  Google Scholar 

  52. Bjornsson, J., Short, M. P., Kwiatkowski, D. J., & Henske, E. (1996). Tuberous sclerosis-associated renal cell carcinoma. American Journal of Pathology, 149, 1201–1208.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Zbar, B., Glenn, G., Merino, M., Middelton, L., Peterson, J., Toro, J., et al. (2007). Familial renal carcinoma: clinical evaluation, clinical subtypes and risk of renal carcinoma development. Journal of Urology, 177, 461–465.

    PubMed  Google Scholar 

  54. Farley, M., Schmidt, L., Mester, J., Pena-Llopis, S., Pavia-Jimenez, A., Christie, A., et al. (2013). A novel germline BAP1 mutation predisposes to familial clear-cell renal cell carcinoma. Molecular Cancer Research, 11, 1061–1071.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Lonser, R. R., Glenn, G. M., Walther, M., Chew, E. Y., Libutti, S. K., Lineham, W. M., et al. (2003). von Hippel-Lindau disease. Lancet, 361, 2059–2067.

    CAS  PubMed  Google Scholar 

  56. Linehan, W. M., Pinto, P. A., Bratslavsky, G., Pfaffenroth, E., Merino, M., Vocke, C. D., et al. (2009). Hereditary kidney cancer: unique opportunity for disease-based therapy. Cancer, 115, 2252–2261.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Schmidt, L., Junker, K., Nakaigawa, N., Kinjerski, T., Weirich, G., Miller, M., et al. (1999). Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene, 18, 2343–2350.

    CAS  PubMed  Google Scholar 

  58. Schmidt, L., Junker, K., Weirich, G., Glenn, G., Choyke, P., Lubensky, I., et al. (1998). Two North American families with hereditary papillary renal carcinoma and identical novel mutations in the MET proto-oncogene. Cancer Research, 58, 1719–1722.

    CAS  PubMed  Google Scholar 

  59. Coleman, J. A., & Russo, P. (2009). Hereditary and familial kidney cancer. Current Opinion in Urology, 19, 478–485.

    PubMed  Google Scholar 

  60. Toro, J., Wei, M., Glen, G., Weinreich, M., Toure, O., Vocke, C., et al. (2008). BHD mutations, clinical and molecular genetic investigations of Birt-Hogg-Dube syndrome: a new series of 50 families and a review of published reports. Journal of Medical Genetics, 45, 321–331.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Shuin, T., Tamasaki, I., Tamura, K., Okuda, H., Furihata, M., & Ashida, S. (2006). Von Hippel-Lindau disease: molecular pathological basis, clinical criteria, genetic testing, clinical features of tumors and treatment. Japanese Journal of Clinical Oncology, 36, 337–343.

    PubMed  Google Scholar 

  62. Popova, T., Hebert, L., Jacquemin, V., Gad, S., Caux-Moncoutier, V., Dubois-d’Enghien, C., et al. (2013). Germline BAP1 mutations predispose to renal cell carcinoma. American Journal of Human Genetics. doi:10.1016/j.ajhg/2013.1004.1012.

    PubMed Central  PubMed  Google Scholar 

  63. Macher-Goeppinger, S., Roth, W., Wagener, N., Hohenfellner, M., Penzel, R., Haferkamp, A., et al. (2012). Molecular heterogeneity of TFE activation in renal cell carcinoma. Modern Pathology, 25, 308–315.

    CAS  PubMed  Google Scholar 

  64. Klaassen, Z., Tatem, A., Burnette, J. O., Donohoe, J. M., & Terris, M. K. (2012). Adult Xp11 translocation associated renal cell carcinoma: time to recognize. Urology, 80, 965–968.

    PubMed  Google Scholar 

  65. Audenet, F., Yates, D. R., Cancel-Tassin, G., Cussenot, O., & Roupret, M. (2011). Genetic pathways involved in carcinogenesis of clear cell renal cell carcinoma: genomics towards personalized medicine. BJU International, 12, 1864–1870.

    Google Scholar 

  66. Shen, C., & Kaelin, W. G. (2013). The VHL/HIF axis in clear cell renal carcinoma. Seminars in Cancer Biology, 23, 18–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Choueiri, T. K., Pomerantz, M. M., & Signoretti, S. (2013). Renal-cell carcinoma: a step closer to a new classification. Lancet Oncology, 14, 105–106.

    Google Scholar 

  68. Pollack, J. R., & Shain, A. H. (2013). The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One, 8(1), e55119. doi:10.1371/journal.pone.0055119.

    PubMed Central  PubMed  Google Scholar 

  69. Kapur, P., Pena-Llopis, S., Christie, A., Zhrebker, L., Pavia-Jimenez, A., Rathmell, W. K., et al. (2013). Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncology, 14, 159–167.

    CAS  Google Scholar 

  70. Morales, C., Kurban, G., Yap, S., Matevski, D., Evans, A., & Jewett, M. A. (2012). Clinical role of the SWI/SNF complex gene PBRM1 in clear cell renal cell carcinoma [abstract] (pp. 31–32). Rockville: 13th Annual Meeting of the Society of Urologic Oncology.

    Google Scholar 

  71. Pawlowski, R., Muhl, S. M., Sulser, T., Krek, W., Moch, H., & Schraml, P. (2013). Loss of PBRM1 expression is associated with renal cell carcinoma progression. International Journal of Cancer, 132, E11–E17.

    CAS  Google Scholar 

  72. Carbone, M., Yang, H., Pass, H., Krausz, T., Testa, J. R., & Gaudino, G. (2013). BAP1 and cancer. Nature Reviews Cancer, 13, 153–159.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Jensen, D. E., Proctor, M., Marquis, S. T., Gardner, H. P., Ha, S. I., Chodosh, L. A., et al. (1998). BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene, 16, 1097–1112.

    CAS  PubMed  Google Scholar 

  74. Bott, M., Brevet, M., Taylor, B. S., Shimizu, S., Ito, T., Wang, L., et al. (2011). The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nature Genetics, 43, 668–672.

    CAS  PubMed  Google Scholar 

  75. Cancer Genome Atlas Network. (2013). Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 499, 43–49.

    Google Scholar 

  76. DeVita, V. T., Lawrence, T. S., & Rosenberg, S. A. (2008). Cancer: principles and practice of oncology (8th ed.). New York: Wolters Kluwer/Lippincott Williams & Wilkins.

    Google Scholar 

  77. Vanharata, S., Shu, W., Brenet, F., Hakimi, A. A., Heguy, A., Viale, A., et al. (2012). Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nature Medicine, 19, 53–56.

    Google Scholar 

  78. Staller, P., Sulitkova, J., Lisztwan, J., Moch, H., Oakeley, E., & Krek, W. (2003). Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature, 425, 307–311.

    CAS  PubMed  Google Scholar 

  79. Zagzag, D., Krishnamachary, B., Yee, H., Okuyama, H., Chiriboga, L., Ali, M. A., et al. (2005). Stromal cell-derived factor-1a and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Research, 65, 6178–6188.

    CAS  PubMed  Google Scholar 

  80. Wang, L., Chen, W., Gao, L., Yang, Q., Liu, B., Wu, Z., et al. (2012). High expression of CXCR4, CXCR7, and SDF-1 predicts poor survival in renal cell carcinoma. World Journal of Surgical Oncology, 10, 212.

    PubMed Central  PubMed  Google Scholar 

  81. Wang, L., Wang, L., Yang, B., Yang, Q., Qiao, S., Wang, Y., et al. (2009). Strong expression of chemokine receptor CXCR4 by renal cell carcinoma cells correlates with metastasis. Clinical and Experimental Metastasis, 26, 1049–1054.

    CAS  PubMed  Google Scholar 

  82. Gassenmaier, M., Chen, D., Buchner, A., Henkel, L., Schiemann, M., Mack, B., et al. (2013). CXC chemokine receptor 4 is essential for maintenance of renal cell carcinoma-initiating cells and predicts metastasis. Stem Cells, 31, 1467–1476.

    CAS  PubMed  Google Scholar 

  83. Klapper, J. A., Downey, S. G., Smith, F., Yang, J. C., Hughes, M. S., Kammula, U. S., et al. (2008). High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma: a retrospective analysis of response and survival in patients in the surgery branch at the National Cancer Institute between 1986 and 2006. Cancer, 113, 293–301.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Rini, B., de La Motte Rouge, T., Harzstark, A., Michaelson, M. D., Liu, G., Grunwald, V., et al. (2013). Five-year survival in patients with cytokine-refractory metastatic renal cell carcinoma treated with axitinib. Clinical Genitourinary Cancer, 11, 107–114.

    PubMed  Google Scholar 

  85. DiBiase, S., Valicenti, R., Schultz, D., Xie, Y., Gomella, L., & Corn, B. (1997). Palliative irradiation for focally symptomatic metastatic renal cell carcinoma: support for dose escalation based on a biological model. Journal of Urology, 158, 746–749.

    CAS  PubMed  Google Scholar 

  86. Karam, J., & Wood, C. (2011). The role of surgery in advance renal cell carcinoma: cytoreductive nephrectomy and metastectomy. Hematology/oncology Clinics of North America, 25, 753–764.

    PubMed  Google Scholar 

  87. Silberstein, J., Millard, F., Mehrazin, R., Kopp, R., Bazzi, W., DiBlasio, C., et al. (2010). Feasiblity and efficacy of neoadjuvant sunitinib before nephron-sparing surgery. BJU International, 106, 1270–1276.

    PubMed  Google Scholar 

  88. Kapoor, A., Wang, Y., Dishan, B., & Paulter, S. (2014). Update on cryoablation for treatment of small renal mass: oncologic control, renal function preservation, and rate of complications. Current Urology Reports, 15, 396.

    PubMed  Google Scholar 

  89. Li, D., Pua, B., & Madoff, D. (2014). Role of embolization in the treatment of renal masses. Seminars in Interventional Radiology, 31, 70–81.

    PubMed  Google Scholar 

  90. Flanigan, R., Salmon, S., Blumenstein, B., Bearman, S., Roy, V., McGrath, P., et al. (2001). Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. New England Journal of Medicine, 345, 1655–1659.

    CAS  PubMed  Google Scholar 

  91. Heng, D. Y., Rini, B., Beuselinck, B., Lee, J., Knox, J. J., Bjarnason, G. A., et al. (2014). Cytoreductive nephrectomy (CN) in patients with synchronous metastases from renal cell carcinoma: results from the international metastatic renal cell carcinoma database consortium (IMDC). Journal of Clinical Oncology, 32(suppl 4), 396.

    Google Scholar 

  92. Rini, B. I., Escudier, B., Tomczak, P., Kaprin, A., Szczylik, C., Hutson, T. E., et al. (2011). Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet, 378, 1931–1939.

    CAS  PubMed  Google Scholar 

  93. Escudier, B., Pluzanska, A., Koralewski, P., Ravaud, A., Bracarda, S., Szczylik, C., et al. (2007). Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet, 370, 2103–2111.

    PubMed  Google Scholar 

  94. Houghton, P. J. (2010). Everolimus. Clinical Cancer Research, 16, 1368–1372.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Motzer, R. J., Escudier, B., Oudard, S., Hutson, T. E., Porta, C., Bracarda, S., et al. (2010). Phase 3 trial of everolimus for metastatic renal cell carcinoma: final results and prognostic factors. Cancer, 116(18), 4256–4265.

    CAS  PubMed  Google Scholar 

  96. Coppin, C., Porzolt, F., Autenrieth, M., Kumpf, J., Coldman, A., & Wilt, T. (2004). Immunotherapy for advanced renal cell cancer. Cochrane Database of Systematic Reviews, 3, CD001425.

    Google Scholar 

  97. Sternberg, C. N., Davis, I. D., Mardiak, J., Szczylik, C., Lee, E., Wagstaff, J., et al. (2010). Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. Journal of Clinical Oncology, 28, 1061–1068.

    CAS  PubMed  Google Scholar 

  98. Sternberg, C. N., Hawkins, R. E., Wagstaff, J., Salman, P., Mardiak, J., Barrios, C. H., et al. (2013). A randomised, double-blind phase III study of pazopanib in patients with advanced and/or metastatic renal cell carcinoma: final overall survival results and safety update. European Journal of Cancer, 49, 1287–1296.

    CAS  PubMed  Google Scholar 

  99. Escudier, B., Eisen, T., Stadler, W. M., Szczylik, C., Oudard, S., Siebles, M., et al. (2007). Sorafenib in advanced clear-cell renal-cell carcinoma. New England Journal of Medicine, 356, 125–134.

    CAS  PubMed  Google Scholar 

  100. Chow, L. Q. M., & Eckhart, S. G. (2007). Sunitinib: from rational design to clinical efficacy. Journal of Clinical Oncology, 25, 884–896.

    CAS  PubMed  Google Scholar 

  101. Motzer, R. J., Hutson, T. E., Tomczak, P., Michaelson, M. D., Bukowski, R. M., Oudard, S., et al. (2009). Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. Journal of Clinical Oncology, 27, 3584–3590.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Hudes, G., Carducci, M., Tomczak, P., Dutcher, J., Figlin, R., Kapoor, A., et al. (2007). Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. New England Journal of Medicine, 356, 2271–2281.

    CAS  PubMed  Google Scholar 

  103. Lockhart, A. C., Rothenberg, M. L., Dupont, J., Cooper, W., Chevalier, P., Sternas, L., et al. (2010). Phase I study of intravenous vascular endothelial growth factor trap, aflibercept, in patients with advanced solid tumors. Journal of Clinical Oncology, 28, 207–214.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Amin, A., Dudek, A., Logan, T., Lance, R. S., Holzbeierlein, J. M., Master, V. A., et al. (2013). Prolonged survival with personalized immunotherapy (AGS-003) in combination with sunitinib in unfavorable risk metastatic RCC (mRCC). Journal of Clinical Oncology, 31(suppl), 357.

    Google Scholar 

  105. Sarantopoulos, J., Dang, L. H., Lauer, R., Starodub, A., Hauke, R. J., Galsky, M. D., et al. (2013). A phase I/II trial of BNC105P with everolimus in metastatic renal cell carcinoma (mRCC) patients: updated phase I results of the disruptor-1 trial. Journal of Clinical Oncology, 31(suppl), 4563.

    Google Scholar 

  106. Mekhail, T., Masson, E., Fischer, B. S., Gong, J., Iyer, R., Gan, J., et al. (2010). Metabolism, excretion, and pharmacokinetics of oral brivanib in patients with advanced or metastatic solid tumors. Drug Metabolism and Disposition, 38, 1962–1966.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Finn, R. S., Kang, Y. K., Muchahy, M., Polite, B. N., Lim, H. Y., Walters, I., et al. (2012). Phase II, open-label study of brivanib as second-line therapy in patients with advanced hepatocellular carcinoma. Clinical Cancer Research, 18, 2090–2098.

    CAS  PubMed  Google Scholar 

  108. Choueiri, T. K., Pal, S. K., McDermott, D. F., Ramies, D. A., Morrisey, S., Lee, Y., et al. (2012). Efficacy of cabozantinib (XL184) in patients (pts) with metastatic, refractory renal cell carcinoma (RCC). Journal of Clinical Oncology, 30(suppl), 4504.

    Google Scholar 

  109. Sridhar, S. S., Mackenzie, M. J., Hotte, S. J., Mukherjee, S. D., Tannock, I. F., Murray, N., et al. (2013). A phase II study of cediranib (AZD 2171) in treatment naive patients with progressive unresectable recurrent or metastatic renal cell carcinoma. A trial of the PMH phase 2 consortium. Investigational New Drugs. doi:10.1007/s10637-013-9931-1.

    PubMed  Google Scholar 

  110. Keefe, S. M., Heitjan, D., Hennessey, M., Robinson, J., Mykulowicz, K., Marshall, A., et al. (2014). Interim results of a phase 1b/2a study evaluating the nano pharmaceutical CRLX101 with bevacizumab (bev) in the treatment of patients (pts) with refractory metastatic renal cell carcinoma (mRCC). Journal of Clinical Oncology, 32(suppl), 412.

    Google Scholar 

  111. Bendell, J., Gordon, M. S., Hurwitz, H., Condon, C., Yang, Y., Wilson, D., et al. (2011). Phase I study of ACE-041, a novel inhibitor of ALK1-mediated angiogenesis, in patients with advanced solid tumors. Journal of Clinical Oncology, 29(suppl), 3070.

    Google Scholar 

  112. Angevin, E., Lopez-Martin, J. A., Lin, C. C., Gschwend, J. E., Harzstark, A., Castellano, D., et al. (2012). Phase I study of dovitinib (TKI258), an oral FGFR, VEGFR, and PDGFR inhibitor, in advanced or metastatic renal cell carcinoma. Clinical Cancer Research, 19(5), 1257–1268.

    Google Scholar 

  113. Angevin, E., Grunwald, V., Ravaud, A., Castellano, D. E., Lin, C. C., Gschwend, J. E., et al. (2011). A phase II study of dovitinib (TKI258), an FGFR and VEGFR inhibitor, in patients with advanced or metastatic renal cell cancer (mRCC). Journal of Clinical Oncology, 29(suppl), 4551.

    Google Scholar 

  114. Motzer, R. J., Porta, C., Vogelzang, N. J., Sternberg, C. N., Szczylik, C., Zolnierek, J., et al. (2014). Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: an open label, randomised phase 3 trial. Lancet Oncology, 15, 286–296.

    CAS  Google Scholar 

  115. Pili, R., Shen, L., George, S., Hammers, H. J., Sandecki, A., Collins, C., et al. (2013). Phase I study of high-dose interleukin 2, aldesleukin, in combination with the histone deacetylase inhibitor, entinostat, in patients with metastatic renal cell carcinoma: safetly and tolerability results. Journal of Clinical Oncology, 31(suppl), 369.

    Google Scholar 

  116. Choueiri, T. K., Vaishampayan, U., Rosenberg, J. E., Logan, T. F., Harzstark, A., Bukowski, R. M., et al. (2013). Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. Journal of Clinical Oncology, 31, 181–186.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Belldegrun, A. S., Chamie, K., Kloepfer, P., Fall, B., Bevan, P., Storkel, S., et al. (2013). ARISER: a randomised double blind phase III study to evaluate adjuvant cG250 treatment versus placebo in patients with high-risk ccRCC—results and implications for adjuvant clinical trials. Journal of Clinical Oncology, 31(suppl), 4507.

    Google Scholar 

  118. Walter, S., Weinschenk, T., Stenzl, A., Zdrojowy, R., Pluzanska, A., Szczylik, C., et al. (2012). Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nature Medicine, 18, 1254–1261.

    CAS  PubMed  Google Scholar 

  119. Bang, Y.-J., Su, W. C., Nam, D. H., Lim, W. T., Bauer, T. M., Brana, I., et al. (2014). Phase I study of the safety and efficacy of INC280 in patients with advanced MET-dependent solid tumors. Journal of Clinical Oncology, 32(suppl), 2520.

    Google Scholar 

  120. Molina, A. M., Hutson, T. E., Larkin, J. M., Gold, A., Andresen, C., Wood, K., et al. (2013). A phase Ib clinical trial of the multitargeted kinase inhibitor lenvatinib (E7080) in combination with everolimus for treatment of metastatic renal cell carcinoma (RCC). Journal of Clinical Oncology, 31(suppl 6), 358.

    Google Scholar 

  121. Tannir, N. M., Wong, Y. N., Kollmannsberger, C. K., Ernstoff, M. S., Perry, D. J., Appleman, L. J., et al. (2011). Phase 2 trial of linifanib (ABT-869) in patients with advanced renal cell cancer after sunitinib failure. European Journal of Cancer, 47, 2706–2714.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Ghamande, S., Lin, C., Cho, D., Coleman, T., Chaudhary, I., Cleary, J., et al. (2011). A phase I study of the novel DNA topoisomerase-1 inhibitor, TLC388, administered intravenously to patients with advanced solid tumors. Journal of Clinical Oncology, 29(suppl), e13618.

    Google Scholar 

  123. Jonasch, E., Corn, P. G., Pagliaro, L. C., Lara, P., Wang, X., Do, K.-A., et al. (2013). Randomized phase II CTEP study of MK2206 versus everolimus in VEGF inhibitor refractory renal cell carcinoma patients. Journal of Clinical Oncology, 31(suppl), 4517.

    Google Scholar 

  124. Cho, D. C., Sosman, J. A., Sznol, M., Gordon, M. S., Hollebecque, A., Hamid, O., et al. (2013). Clinical activity, safety, and biomarkers of MPDL3230A, an engineered PD-L1 antibody in patients with metastatic renal cell carcinoma (mRCC). Journal of Clinical Oncology, 31(suppl), 4505.

    Google Scholar 

  125. Borghaei, H., Alpaugh, K., Hedlund, G., Forsberg, G., Langer, C., Rogatko, A., et al. (2009). Phase I dose escalation, pharmacokinetic and pharmacodynamic study of naptumomab estafenatox alone in patients with advanced cancer and with docetaxel in patients with advanced non-small-cell lung cancer. Journal of Clinical Oncology, 27, 4116–4123.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Hawkins, R. E., Gore, M. E., Shparyk, Y., Bondar, V., Gladkov, O., Ganev, T., et al. (2013). A randomized phase II/III study of naptumomab estafenatox plus IFN-a versus IFN-a in advanced renal cell carcinoma. Journal of Clinical Oncology, 31(suppl), 3073.

    Google Scholar 

  127. Eisen, T., Shparyk, Y., Jones, R., MacLeod, N. J., Temple, G., Finnigan, H., et al. (2013). Phase II efficacy and safety study of nintedanib versus sunitinib in previously untreated renal cell carcinoma (RCC) patients. Journal of Clinical Oncology, 31(suppl), 4506.

    Google Scholar 

  128. Topalian, S. L., Hodi, S. F., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., et al. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New England Journal of Medicine, 366, 2443–2454.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Brahmer, J. R., Tykodi, S. S., Chow, L. Q. M., Hwu, W.-J., Topalian, S. L., Hwu, P., et al. (2012). Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. New England Journal of Medicine, 366, 2455–2465.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Ribas, A., Hodi, S. F., Kefford, R., Hamid, O., Daud, A., Wolchok, J. D., et al. (2014). Efficacy and safety of the anti-PD-1 monoclonal antibody MK-3475 in 411 patients with melanoma (MEL). Journal of Clinical Oncology, 32(suppl), LBA9000.

    Google Scholar 

  131. Atkins, M. B., Kudchadkar, R. R., Sznol, M., McDermott, D. F., Lotern, M., Schachter, J., et al. (2014). Phase 2, multicenter, safety and efficacy of pidilizumab in patients with metastatic melanoma. Journal of Clinical Oncology, 32(suppl), 9001.

    Google Scholar 

  132. Garcia, J. A., Hudes, G. R., Choueiri, T. K., Stadler, W. M., Wood, L. S., Gurtler, J., et al. (2014). A phase 2, single-arm study of ramucirumab in patients with metastatic renal cell carcinoma with disease progression on or intolerance to tyrosine kinase inhibitor therapy. Cancer, 120, 1647–1655.

    CAS  PubMed  Google Scholar 

  133. Eisen, T., Joensuu, H., Nathan, P. D., Harper, P. G., Wojtukiewicz, M. Z., Nicholson, S., et al. (2012). Regorafenib for patients with previously untreated metastatic or unresectable renal-cell carcinoma: a single-group phase 2 trial. Lancet Oncology, 13, 1055–1062.

    CAS  Google Scholar 

  134. Schoffski, P., Garcia, J. A., Stadler, W. M., Gil, T., Jonasch, E., Tagawa, S. T., et al. (2011). A phase II study of the efficacy and safety of AMG 102 in patients with metastatic renal cell carcinoma. BJU International, 108, 679–686.

    CAS  PubMed  Google Scholar 

  135. Gordon, M., Just, R., Rosen, L., & Dorr, A. (2010). A phase I study of sonepiczumab (S), a humanized monoclonal antibody to sphingosine-1-phosphate (S1P), in patients with advanced solid tumors. Journal of Clinical Oncology, 28(suppl), 2560.

    Google Scholar 

  136. Puzanov, I., Sosman, J. A., Santoro, A., Martell, R. E., Dy, G. K., Goff, L. W., et al. (2012). Safety and efficacy of MET inhibitor tivantinib (ARQ 197) combined with sorafenib in patients (pts) with renal cell carcinoma (RCC) from a phase I study. Journal of Clinical Oncology, 30(suppl), 4545.

    Google Scholar 

  137. Rosen, L. S., Senzer, N., Mekhail, T., Ganapathi, R., Chai, F., Savage, R. E., et al. (2011). A phase I dose-escalation study of tivantinib (ARQ 197) in adult patients with metastatic solid tumors. Clinical Cancer Research, 17, 7754–7764.

    CAS  PubMed  Google Scholar 

  138. Motzer, R. J., Nosov, D., Eisen, T., Bondarenko, I. N., Lesovoy, V., Lipatov, O. N., et al. (2012). Tivozanib versus sorafenib as initial targeted therapy for patients with advanced renal cell carcinoma: results from a phase III randomized, open-label, multicenter trial. Journal of Clinical Oncology, 30(suppl), 4501.

    Google Scholar 

  139. Motzer, R. J., Nosov, D., Eisen, T., Bondarenko, I., Lesovoy, V., Lipatov, O. N., et al. (2013). Tivozanib versus sorafenib as initial targeted therapy for patients with metastatic renal cell carcinoma: results from a phase III trial. Journal of Clinical Oncology, 31, 3791–3799.

    CAS  PubMed  Google Scholar 

  140. Rini, B. I., Szczylik, C., Tannir, N. M., Koralewski, P., Tomczak, P., Deptala, A., et al. (2011). AMG 386 in combination with sorafenib in patients (pts) with metastatic renal cell cancer (mRCC): a randomized, double-blind, placebo-controlled, phase II study. Journal of Clinical Oncology, 29(suppl), 309.

    Google Scholar 

  141. Stamatakis, L., Shuch, B., Singer, E. A., Nix, J., Truong, H., Friend, J. C., et al. (2013). Phase II trial of vandetanib in Von Hippel-Lindau-associated renal cell carcinoma. Journal of Clinical Oncology, 31(suppl), 4584.

    Google Scholar 

  142. Gan, H. K., Lickliter, J., Millward, M., Gu, Y., Su, W., Frigault, M., et al. (2014). First-in-human phase I study of a selective c-Met inhibitor volitinib (HMP504/AZD6094) in patients with advanced solid tumors. Journal of Clinical Oncology, 32(suppl), 11111.

    Google Scholar 

  143. van Geel, R. M., Beijnen, J., & Schellens, J. (2012). Concise drug review, pazopanib and axitinib. The Oncologist, 17, 1081–1089.

    PubMed Central  PubMed  Google Scholar 

  144. Motzer, R. J., Hutson, T. E., Cella, D., Reeves, J., Hawkins, R., Guo, J., et al. (2013). Pazopanib versus sunitinib in metastatic renal-cell carcinoma. New England Journal of Medicine, 369, 722–731.

    CAS  PubMed  Google Scholar 

  145. McDermott, D., Ghebremichael, S., Signoretti, S., Margolin, K., Clark, J., Sosman, J. A., et al. (2010). The high-dose aldesleukin (HD IL-2) select trial in patients with metastatic renal cell carcinoma (mRCC): preliminary assessment of clinical benefit. Journal of Clinical Oncology, 28(suppl), 4514.

    Google Scholar 

  146. Watanabe, S., Tanaka, J., Ota, T., Kondo, R., Tanaka, H., Kagamu, H., et al. (2011). Clinical responses to EGFR-tyrosine kinase inhibitor retreatment in non-small cell lung cancer patients who benefited from prior effective gefitinib therapy: a retrospective analysis. BMC Cancer, 11, 1.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Naing, A., & Kurzrock, R. (2010). Chemotherapy resistance and retreatment: a dogma revisited. Clinical Colorectal Cancer, 9, E1–E4. doi:10.3816/CCC.2010.n.3026.

    PubMed  Google Scholar 

  148. Naing, A., & Kurzrock, R. (2012). Dodging a dogma: is treating beyond progression beneficial. Cancer Chemotheraphy and Pharmacology, 71, 1385–1386.

    Google Scholar 

  149. Zama, I. N., Hutson, T. E., Elson, P., Cleary, J. M., Choueiri, T. K., Heng, D. Y., et al. (2010). Sunitinib rechallenge in metastatic renal cell carcinoma patients. Cancer, 116, 5400–5406.

    CAS  PubMed  Google Scholar 

  150. Rini, B., Bellmunt, J., Clancy, J., Wang, K., Niellhammer, A., & Escudier, B. (2013). Randomized phase IIIB trial of temsirolimus and bevacizumab versus interferon and bevacizumab in metastatic renal cell carcinoma: results from intoract. Annals of Oncology, 23(suppl), LBA21_PR.

    Google Scholar 

  151. McDermott, D. F., Manola, J., Pins, M., Flaherty, K. T., Atkins, M. B., Dutcher, J., et al. (2013). The best trial (E2804): a randomized phase II study of VEGF, RAF kinase, and mTOR combination targeted therapy (CTT) with bevacizumab (bev), sorafenib (sor), and temsirolimus (tem) in advanced renal cell carcinoma (RCC). Journal of Clinical Oncology, 31(suppl), 345.

    Google Scholar 

  152. Wolchok, J. D., Kluger, H., Callahan, M. K., Postow, M. A., Rizvi, N. A., Lesokhin, A., et al. (2013). Nivolumab plus ipilimumab in advanced melanoma. New England Journal of Medicine, 369, 122–133.

    CAS  PubMed  Google Scholar 

  153. Henary, H., Hong, D. S., Falchook, G. S., Tsimberidou, A., George, G., Wen, S., et al. (2013). Melanoma patients in a phase I clinic: molecular aberrations, targeted therapy and outcomes. Annals of Oncology, 24, 2158–2165.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Tsimberidou, A.-M., Iskander, N., Hong, D. S., Wheeler, J. J., Falchook, G., Fu, S., et al. (2012). Personalized medicine in a phase I clinical trials program: the MD Anderson cancer center initiative. Clinical Cancer Research, 18, 6373–6383.

    CAS  PubMed  Google Scholar 

  155. Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., et al. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. New England Journal of Medicine, 364, 2507–2516.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Kwak, E., Bang, Y.-J., Camidge, D. R., Shaw, A. T., Solomon, B., Maki, R. G., et al. (2010). Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. New England Journal of Medicine, 363, 1693–1703.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Janku, F., Berry, D. A., Gong, J., Parsons, H. A., Stewart, D. J., & Kurzrock, R. (2012). Outcomes of phase II clinical trials with single-agent therapies in advanced/metastatic non-small cell lung cancer published between 2000 and 2009. Clinical Cancer Research, 18, 6356–6363.

    CAS  PubMed  Google Scholar 

  158. Janku, F., Wheler, J., Westin, S. N., Moulder, S. L., Naing, A., Tsimberidou, A. M., et al. (2012). PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations. Journal of Clinical Oncology, 30, 777–782.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Voss, M. H., Hakimi, A. A., Scott, S. N., Takeda, S., Liu, H., Chen, Y., et al. (2012). Genetic determinants of long-term response to rapalog therapy in advanced renal cell carcinoma (RCC). Journal of Clinical Oncology, 30(suppl), 4604.

    Google Scholar 

  160. Said, R., Hong, D. S., Warenke, C. L., Lee, J. J., Wheeler, J. J., Janku, F., et al. (2013). P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-containing therapy. Oncotarget, 4, 705–714.

    PubMed Central  PubMed  Google Scholar 

  161. Chung, A., Wu, X., Zhuang, G., Ngu, H., Kasman, I., Zhang, J., et al. (2013). An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nature Medicine, 19, 1114–1123.

    CAS  PubMed  Google Scholar 

  162. Westin, J. R., & Kurzrock, R. (2012). It's about time: lessons for solid tumors from chronic myelogenous leukemia therapy. Molecular Cancer Therapeutics, 11, 2549–2555.

  163. Smaldone, M. C., Fung, C., Uzzo, R., & Haas, N. B. (2011). Adjuvant and neoadjuvant therapies in high-risk renal cell carcinoma. Hematology/oncology Clinics of North America, 25, 765–791.

    PubMed  Google Scholar 

Download references

Acknowledgements

Funded in part by the Joan and Irwin Jacobs Fund and MyAnswerToCancer philanthropic fund.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Michael Randall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randall, J.M., Millard, F. & Kurzrock, R. Molecular aberrations, targeted therapy, and renal cell carcinoma: current state-of-the-art. Cancer Metastasis Rev 33, 1109–1124 (2014). https://doi.org/10.1007/s10555-014-9533-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9533-1

Keywords

Navigation