Skip to main content

Advertisement

Log in

MTA family of proteins in DNA damage response: mechanistic insights and potential applications

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The DNA damage, most notably DNA double-strand breaks, poses a serious threat to the stability of mammalian genome. Maintenance of genomic integrity is largely dependent on an efficient, accurate, and timely DNA damage response in the context of chromatin. Consequently, dysregulation of the DNA damage response machinery is fundamentally linked to the genomic instability and a likely predisposition to cancer. In turn, aberrant activation of DNA damage response pathways in human cancers enables tumor cells to survive DNA damages, thus, leading to the development of resistance of tumor cells to DNA damaging radio- and chemotherapies. A substantial body of experimental evidence has established that ATP-dependent chromatin remodeling and histone modifications play a central role in the DNA damage response. As a component of the nucleosome remodeling and histone deacetylase (NuRD) complex that couples both ATP-dependent chromatin remodeling and histone deacetylase activities, the metastasis-associated protein (MTA) family proteins have been recently shown to participate in the DNA damage response beyond its well-established roles in gene transcription. In this thematic review, we will focus on our current understandings of the role of the MTA family proteins in the DNA damage response and their potential implications in DNA damaging anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Manavathi, B., & Kumar, R. (2007). Metastasis tumor antigens, an emerging family of multifaceted master coregulators. Journal of Biological Chemistry, 282, 1529–1533.

    CAS  PubMed  Google Scholar 

  2. Manavathi, B., Singh, K., & Kumar, R. (2007). MTA family of coregulators in nuclear receptor biology and pathology. Nuclear Receptor Signaling, 5, e010.

    PubMed Central  PubMed  Google Scholar 

  3. Yang, N., & Xu, R. M. (2013). Structure and function of the BAH domain in chromatin biology. Critical Reviews in Biochemistry and Molecular Biology, 48, 211–221.

    CAS  PubMed  Google Scholar 

  4. Kuo, A. J., Song, J., Cheung, P., Ishibe-Murakami, S., Yamazoe, S., Chen, J. K., et al. (2012). The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature, 484, 115–119.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Onishi, M., Liou, G. G., Buchberger, J. R., Walz, T., & Moazed, D. (2007). Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly. Molecular Cell, 28, 1015–1028.

    CAS  PubMed  Google Scholar 

  6. Wang, L., Charroux, B., Kerridge, S., & Tsai, C. C. (2008). Atrophin recruits HDAC1/2 and G9a to modify histone H3K9 and to determine cell fates. EMBO Reports, 9, 555–562.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Ding, Z., Gillespie, L. L., & Paterno, G. D. (2003). Human MI-ER1 alpha and beta function as transcriptional repressors by recruitment of histone deacetylase 1 to their conserved ELM2 domain. Molecular Cell. Biology, 23, 250–258.

    CAS  Google Scholar 

  8. Li, S., Paterno, G. D., & Gillespie, L. L. (2013). Nuclear localization of the transcriptional regulator MIER1alpha requires interaction with HDAC1/2 in breast cancer cells. PLoS One, 8, e84046.

    PubMed Central  PubMed  Google Scholar 

  9. Aasland, R., Stewart, A. F., & Gibson, T. (1996). The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends in Biochemical Sciences, 21, 87–88.

    CAS  PubMed  Google Scholar 

  10. Boyer, L. A., Langer, M. R., Crowley, K. A., Tan, S., Denu, J. M., & Peterson, C. L. (2002). Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Molecular Cell, 10, 935–942.

    CAS  PubMed  Google Scholar 

  11. Yu, J., Li, Y., Ishizuka, T., Guenther, M. G., & Lazar, M. A. (2003). A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. EMBO Journal, 22, 3403–3410.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Boyer, L. A., Latek, R. R., & Peterson, C. L. (2004). The SANT domain: a unique histone-tail-binding module? Nature Reviews Molecular Cell Biology, 5, 158–163.

    CAS  PubMed  Google Scholar 

  13. Denslow, S. A., & Wade, P. A. (2007). The human Mi-2/NuRD complex and gene regulation. Oncogene, 26, 5433–5438.

    CAS  PubMed  Google Scholar 

  14. Li, D. Q., Pakala, S. B., Nair, S. S., Eswaran, J., & Kumar, R. (2012). Metastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer. Cancer Research, 72, 387–394.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Lai, A. Y., & Wade, P. A. (2011). Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nature Reviews Cancer, 11, 588–596.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Chou, D. M., Adamson, B., Dephoure, N. E., Tan, X., Nottke, A. C., Hurov, K. E., et al. (2010). A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 107, 18475–18480.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Li, D. Q., Ohshiro, K., Reddy, S. D., Pakala, S. B., Lee, M. H., Zhang, Y., et al. (2009). E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. Proceedings of the National Academy of Sciences of the United States of America, 106, 17493–17498.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Li, D. Q., & Kumar, R. (2010). Mi-2/NuRD complex making inroads into DNA-damage response pathway. Cell Cycle, 9, 2071–2079.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Li, D. Q., Divijendra Natha Reddy, S., Pakala, S. B., Wu, X., Zhang, Y., Rayala, S. K., et al. (2009). MTA1 coregulator regulates p53 stability and function. Journal of Biological Chemistry, 284(50), 34545–34552.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Li, D. Q., Ohshiro, K., Khan, M. N., & Kumar, R. (2010). Requirement of MTA1 in ATR-mediated DNA damage checkpoint function. Journal of Biological Chemistry, 285(26), 19802–19812.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Li, D. Q., Pakala, S. B., Reddy, S. D., Ohshiro, K., Peng, S. H., Lian, Y., et al. (2010). Revelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway. Journal of Biological Chemistry, 285(13), 10044–10052.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Smeenk, G., Wiegant, W. W., Vrolijk, H., Solari, A. P., Pastink, A., & van Attikum, H. (2010). The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage. Journal of Cell Biology, 190, 741–749.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Luijsterburg, M. S., & van Attikum, H. (2012). Close encounters of the RNF8th kind: when chromatin meets DNA repair. Current Opinion in Cell Biology, 24, 439–447.

    CAS  PubMed  Google Scholar 

  24. Cann, K. L., & Dellaire, G. (2011). Heterochromatin and the DNA damage response: the need to relax. Biochemical Cell Biology, 89, 45–60.

    CAS  Google Scholar 

  25. Toiber, D., Erdel, F., Bouazoune, K., Silberman, D. M., Zhong, L., Mulligan, P., et al. (2013). SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Molecular Cell, 51, 454–468.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Jackson, S. P., & Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature, 461(7267), 1071–1078.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Harper, J. W., & Elledge, S. J. (2007). The DNA damage response: ten years after. Molecular Cell, 28, 739–745.

    CAS  PubMed  Google Scholar 

  28. Stucki, M., Clapperton, J. A., Mohammad, D., Yaffe, M. B., Smerdon, S. J., & Jackson, S. P. (2005). MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell, 123, 1213–1226.

    CAS  PubMed  Google Scholar 

  29. Chen, C. C., Carson, J. J., Feser, J., Tamburini, B., Zabaronick, S., Linger, J., et al. (2008). Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell, 134, 231–243.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.

    CAS  PubMed  Google Scholar 

  31. Zou, L., & Elledge, S. J. (2003). Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science, 300, 1542–1548.

    CAS  PubMed  Google Scholar 

  32. Vidanes, G. M., Bonilla, C. Y., & Toczyski, D. P. (2005). Complicated tails: histone modifications and the DNA damage response. Cell, 121, 973–976.

    CAS  PubMed  Google Scholar 

  33. Ciccia, A., & Elledge, S. J. (2010). The DNA damage response: making it safe to play with knives. Molecular Cell, 40, 179–204.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Pandita, T. K., & Richardson, C. (2009). Chromatin remodeling finds its place in the DNA double-strand break response. Nucleic Acids Research, 37, 1363–1377.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Sulli, G., Di Micco, R., & d’Adda di Fagagna, F. (2012). Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nature Reviews Cancer, 12, 709–720.

    CAS  PubMed  Google Scholar 

  36. Stracker, T. H., & Petrini, J. H. (2011). The MRE11 complex: starting from the ends. Nature Reviews Molecular Cell Biology, 12, 90–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Parrilla-Castellar, E. R., Arlander, S. J., & Karnitz, L. (2004). Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst), 3, 1009–1014.

    CAS  Google Scholar 

  38. Lee, J. H., & Paull, T. T. (2004). Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science, 304, 93–96.

    CAS  PubMed  Google Scholar 

  39. Morrison, A. J., Kim, J. A., Person, M. D., Highland, J., Xiao, J., Wehr, T. S., et al. (2007). Mec1/Tel1 phosphorylation of the INO80 chromatin remodeling complex influences DNA damage checkpoint responses. Cell, 130, 499–511.

    CAS  PubMed  Google Scholar 

  40. Lee, J. H., & Paull, T. T. (2005). ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science, 308, 551–554.

    CAS  PubMed  Google Scholar 

  41. Shiloh, Y., & Ziv, Y. (2013). The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nature Reviews Molecular Cell Biology, 14, 197–210.

    CAS  Google Scholar 

  42. Cimprich, K. A., & Cortez, D. (2008). ATR: an essential regulator of genome integrity. Nature Reviews Molecular Cell Biology, 9, 616–627.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Falck, J., Coates, J., & Jackson, S. P. (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature, 434, 605–611.

    CAS  PubMed  Google Scholar 

  44. Shiloh, Y. (2003). ATM and related protein kinases: safeguarding genome integrity. Nature Reviews Cancer, 3, 155–168.

    CAS  PubMed  Google Scholar 

  45. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., & Bonner, W. M. (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. Journal of Biological Chemistry, 273, 5858–5868.

    CAS  PubMed  Google Scholar 

  46. Stiff, T., O’Driscoll, M., Rief, N., Iwabuchi, K., Lobrich, M., & Jeggo, P. A. (2004). ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Research, 64, 2390–2396.

    CAS  PubMed  Google Scholar 

  47. Ward, I. M., & Chen, J. (2001). Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. Journal of Biological Chemistry, 276, 47759–47762.

    CAS  PubMed  Google Scholar 

  48. Kruhlak, M. J., Celeste, A., & Nussenzweig, A. (2006). Spatio-temporal dynamics of chromatin containing DNA breaks. Cell Cycle, 5, 1910–1912.

    CAS  PubMed  Google Scholar 

  49. Kinner, A., Wu, W., Staudt, C., & Iliakis, G. (2008). Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Research, 36, 5678–5694.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Soria, G., Polo, S. E., & Almouzni, G. (2012). Prime, repair, restore: the active role of chromatin in the DNA damage response. Molecular Cell, 46, 722–734.

    CAS  PubMed  Google Scholar 

  51. Paull, T. T., Rogakou, E. P., Yamazaki, V., Kirchgessner, C. U., Gellert, M., & Bonner, W. M. (2000). A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Current Biology, 10, 886–895.

    CAS  PubMed  Google Scholar 

  52. Morrison, A. J., Highland, J., Krogan, N. J., Arbel-Eden, A., Greenblatt, J. F., Haber, J. E., et al. (2004). INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell, 119, 767–775.

    CAS  PubMed  Google Scholar 

  53. van Attikum, H., Fritsch, O., Hohn, B., & Gasser, S. M. (2004). Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell, 119, 777–788.

    PubMed  Google Scholar 

  54. Zhang, R., Liu, S. T., Chen, W., Bonner, M., Pehrson, J., Yen, T. J., et al. (2007). HP1 proteins are essential for a dynamic nuclear response that rescues the function of perturbed heterochromatin in primary human cells. Molecular Cell. Biology, 27, 949–962.

    CAS  Google Scholar 

  55. Murga, M., Jaco, I., Fan, Y., Soria, R., Martinez-Pastor, B., Cuadrado, M., et al. (2007). Global chromatin compaction limits the strength of the DNA damage response. Journal of Cell Biology, 178, 1101–1108.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Xu, Y., Sun, Y., Jiang, X., Ayrapetov, M. K., Moskwa, P., Yang, S., et al. (2010). The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. Journal of Cell Biology, 191, 31–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Takahashi, K., & Kaneko, I. (1985). Changes in nuclease sensitivity of mammalian cells after irradiation with 60Co gamma-rays. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 48, 389–395.

    CAS  PubMed  Google Scholar 

  58. Ziv, Y., Bielopolski, D., Galanty, Y., Lukas, C., Taya, Y., Schultz, D. C., et al. (2006). Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nature Cell Biology, 8, 870–876.

    CAS  PubMed  Google Scholar 

  59. Price, B. D., & D’Andrea, A. D. (2013). Chromatin remodeling at DNA double-strand breaks. Cell, 152, 1344–1354.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Altaf, M., Saksouk, N., & Cote, J. (2007). Histone modifications in response to DNA damage. Mutation Research, 618, 81–90.

    CAS  PubMed  Google Scholar 

  61. Bao, Y. (2011). Chromatin response to DNA double-strand break damage. Epigenomics, 3, 307–321.

    CAS  PubMed  Google Scholar 

  62. Huertas, D., Sendra, R., & Munoz, P. (2009). Chromatin dynamics coupled to DNA repair. Epigenetics, 4, 31–42.

    CAS  PubMed  Google Scholar 

  63. Lai, W., Li, H., Liu, S., & Tao, Y. (2013). Connecting chromatin modifying factors to DNA damage response. International Journal of Molecular Sciences, 14, 2355–2369.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Lans, H., Marteijn, J. A., & Vermeulen, W. (2012). ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics & Chromatin, 5, 4.

    CAS  Google Scholar 

  65. Luijsterburg, M. S., & van Attikum, H. (2011). Chromatin and the DNA damage response: the cancer connection. Molecular Oncology, 5, 349–367.

    CAS  PubMed  Google Scholar 

  66. Mendez-Acuna, L., Di Tomaso, M. V., Palitti, F., & Martinez-Lopez, W. (2010). Histone post-translational modifications in DNA damage response. Cytogenetic and Genome Research, 128, 28–36.

    CAS  PubMed  Google Scholar 

  67. Smeenk, G., & van Attikum, H. (2013). The chromatin response to DNA breaks: leaving a mark on genome integrity. Annual Review of Biochemistry, 82, 55–80.

    CAS  PubMed  Google Scholar 

  68. Park, J. H., Park, E. J., Lee, H. S., Kim, S. J., Hur, S. K., Imbalzano, A. N., et al. (2006). Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction. EMBO Journal, 25, 3986–3997.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Clapier, C. R., & Cairns, B. R. (2009). The biology of chromatin remodeling complexes. Annual Review of Biochemistry, 78, 273–304.

    CAS  PubMed  Google Scholar 

  70. Vignali, M., Hassan, A. H., Neely, K. E., & Workman, J. L. (2000). ATP-dependent chromatin-remodeling complexes. Molecular Cell. Biology, 20, 1899–1910.

    CAS  Google Scholar 

  71. Bao, Y., & Shen, X. (2007). SnapShot: chromatin remodeling complexes. Cell, 129, 632.

    CAS  PubMed  Google Scholar 

  72. Papamichos-Chronakis, M., Krebs, J. E., & Peterson, C. L. (2006). Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes and Development, 20, 2437–2449.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Liang, B., Qiu, J., Ratnakumar, K., & Laurent, B. C. (2007). RSC functions as an early double-strand-break sensor in the cell’s response to DNA damage. Current Biology, 17, 1432–1437.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Seeber, A., Dion, V., & Gasser, S. M. (2013). Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage. Genes and Development, 27, 1999–2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Klochendler-Yeivin, A., Picarsky, E., & Yaniv, M. (2006). Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complex. Molecular Cell. Biology, 26, 2661–2674.

    CAS  Google Scholar 

  76. Park, J. H., Park, E. J., Hur, S. K., Kim, S., & Kwon, J. (2009). Mammalian SWI/SNF chromatin remodeling complexes are required to prevent apoptosis after DNA damage. DNA Repair (Amst), 8, 29–39.

    CAS  Google Scholar 

  77. van Attikum, H., Fritsch, O., & Gasser, S. M. (2007). Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO Journal, 26, 4113–4125.

    PubMed Central  PubMed  Google Scholar 

  78. Chai, B., Huang, J., Cairns, B. R., & Laurent, B. C. (2005). Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes and Development, 19, 1656–1661.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Das, C., Lucia, M. S., Hansen, K. C., & Tyler, J. K. (2009). CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature, 459, 113–117.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Masumoto, H., Hawke, D., Kobayashi, R., & Verreault, A. (2005). A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature, 436, 294–298.

    CAS  PubMed  Google Scholar 

  81. Bhaskara, S., Knutson, S. K., Jiang, G., Chandrasekharan, M. B., Wilson, A. J., Zheng, S., et al. (2010). Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell, 18, 436–447.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Dovey, O. M., Foster, C. T., Conte, N., Edwards, S. A., Edwards, J. M., Singh, R., et al. (2013). Histone deacetylase 1 and 2 are essential for normal T-cell development and genomic stability in mice. Blood, 121, 1335–1344.

    CAS  PubMed  Google Scholar 

  83. Miller, K. M., Tjeertes, J. V., Coates, J., Legube, G., Polo, S. E., Britton, S., et al. (2010). Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nature Structural and Molecular Biology, 17, 1144–1151.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Wang, R. H., Sengupta, K., Li, C., Kim, H. S., Cao, L., Xiao, C., et al. (2008). Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell, 14, 312–323.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Lee, H. S., Park, J. H., Kim, S. J., Kwon, S. J., & Kwon, J. (2010). A cooperative activation loop among SWI/SNF, gamma-H2AX and H3 acetylation for DNA double-strand break repair. EMBO Journal, 29, 1434–1445.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2, 851–861.

    CAS  PubMed  Google Scholar 

  87. Zhang, Y., LeRoy, G., Seelig, H. P., Lane, W. S., & Reinberg, D. (1998). The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell, 95, 279–289.

    CAS  PubMed  Google Scholar 

  88. Tong, J. K., Hassig, C. A., Schnitzler, G. R., Kingston, R. E., & Schreiber, S. L. (1998). Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature, 395, 917–921.

    CAS  PubMed  Google Scholar 

  89. Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell, 113, 207–219.

    CAS  PubMed  Google Scholar 

  90. Polo, S. E., Kaidi, A., Baskcomb, L., Galanty, Y., & Jackson, S. P. (2010). Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. [Research Support, Non-U.S. Gov’t]. EMBO Journal, 29(18), 3130–3139. doi:10.1038/emboj.2010.188.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Smeenk, G., & van Attikum, H. (2011). NuRD alert! NuRD regulates the DNA damage response. Epigenomics, 3, 133–135.

    CAS  PubMed  Google Scholar 

  92. Larsen, D. H., Poinsignon, C., Gudjonsson, T., Dinant, C., Payne, M. R., Hari, F. J., et al. (2010). The chromatin-remodeling factor CHD4 coordinates signaling and repair after DNA damage. Journal of Cell Biology, 190, 731–740.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Schmidt, D. R., & Schreiber, S. L. (1999). Molecular association between ATR and two components of the nucleosome remodeling and deacetylating complex, HDAC2 and CHD4. Biochemistry, 38, 14711–14717.

    CAS  PubMed  Google Scholar 

  94. Dornan, D., Shimizu, H., Mah, A., Dudhela, T., Eby, M., O’Rourke, K., et al. (2006). ATM engages autodegradation of the E3 ubiquitin ligase COP1 after DNA damage. Science, 313, 1122–1126.

    CAS  PubMed  Google Scholar 

  95. Tanaka, H., Arakawa, H., Yamaguchi, T., Shiraishi, K., Fukuda, S., Matsui, K., et al. (2000). A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature, 404, 42–49.

    CAS  PubMed  Google Scholar 

  96. Ward, I. M., Minn, K., & Chen, J. (2004). UV-induced ataxia-telangiectasia-mutated and Rad3-related (ATR) activation requires replication stress. Journal of Biological Chemistry, 279, 9677–9680.

    CAS  PubMed  Google Scholar 

  97. Liu, Q., Guntuku, S., Cui, X. S., Matsuoka, S., Cortez, D., Tamai, K., et al. (2000). Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes and Development, 14, 1448–1459.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Guo, Z., Kumagai, A., Wang, S. X., & Dunphy, W. G. (2000). Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes and Development, 14, 2745–2756.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Chini, C. C., & Chen, J. (2003). Human claspin is required for replication checkpoint control. Journal of Biological Chemistry, 278, 30057–30062.

    CAS  PubMed  Google Scholar 

  100. van Haaften, G., Romeijn, R., Pothof, J., Koole, W., Mullenders, L. H., Pastink, A., et al. (2006). Identification of conserved pathways of DNA-damage response and radiation protection by genome-wide RNAi. Current Biology, 16, 1344–1350.

    PubMed  Google Scholar 

  101. Errico, A., Aze, A., & Costanzo, V. (2014). Mta2 promotes Tipin-dependent maintenance of replication fork integrity. Cell Cycle, 13, 2120–2128.

    CAS  PubMed  Google Scholar 

  102. Ayrapetov, M. K., Xu, C., Sun, Y., Zhu, K., Parmar, K., D’Andrea, A. D., et al. (2011). Activation of Hif1alpha by the prolylhydroxylase inhibitor dimethyoxalyglycine decreases radiosensitivity. PLoS One, 6, e26064.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Thurn, K. T., Thomas, S., Raha, P., Qureshi, I., & Munster, P. N. (2013). Histone deacetylase regulation of ATM-mediated DNA damage signaling. Molecular Cancer Therapeutics, 12, 2078–2087.

    CAS  PubMed  Google Scholar 

  104. Bhaskara, S., Jacques, V., Rusche, J. R., Olson, E. N., Cairns, B. R., & Chandrasekharan, M. B. (2013). Histone deacetylases 1 and 2 maintain S-phase chromatin and DNA replication fork progression. Epigenetics & Chromatin, 6, 27.

    CAS  Google Scholar 

  105. O’Shaughnessy, A., & Hendrich, B. (2013). CHD4 in the DNA-damage response and cell cycle progression: not so NuRDy now. Biochemical Society Transactions, 41, 777–782.

    PubMed Central  PubMed  Google Scholar 

  106. Pan, M. R., Hsieh, H. J., Dai, H., Hung, W. C., Li, K., Peng, G., et al. (2012). Chromodomain helicase DNA-binding protein 4 (CHD4) regulates homologous recombination DNA repair, and its deficiency sensitizes cells to poly(ADP-ribose) polymerase (PARP) inhibitor treatment. Journal of Biological Chemistry, 287, 6764–6772.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Luijsterburg, M. S., Acs, K., Ackermann, L., Wiegant, W. W., Bekker-Jensen, S., Larsen, D. H., et al. (2012). A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure. EMBO Journal, 31, 2511–2527.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Sims, J. K., & Wade, P. A. (2011). Mi-2/NuRD complex function is required for normal S phase progression and assembly of pericentric heterochromatin. Molecular Biology of the Cell, 22, 3094–3102.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Zhao, S., Choi, M., Overton, J. D., Bellone, S., Roque, D. M., Cocco, E., et al. (2013). Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 110, 2916–2921.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Wu, M., Wang, L., Li, Q., Li, J., Qin, J., & Wong, J. (2013). The MTA family proteins as novel histone H3 binding proteins. Cell Bioscience, 3, 1.

    PubMed Central  PubMed  Google Scholar 

  111. Goodarzi, A. A., Noon, A. T., Deckbar, D., Ziv, Y., Shiloh, Y., Lobrich, M., et al. (2008). ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Molecular Cell, 31, 167–177.

    CAS  PubMed  Google Scholar 

  112. Kumar, R., Wang, R. A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. Seminar in Oncology, 30, 30–37.

    CAS  Google Scholar 

  113. Yu, L., Su, Y. S., Zhao, J., Wang, H., & Li, W. (2013). Repression of NR4A1 by a chromatin modifier promotes docetaxel resistance in PC-3 human prostate cancer cells. FEBS Letters, 587, 2542–2551.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are in debt to our colleagues in this field whose original work may have not been cited here due to space limitations. This study was supported by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No. 2013–06) (to D-Q L) and NIH grants CA98823 (to RK).

Conflict of interest

The authors declare no any potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Qiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, DQ., Yang, Y. & Kumar, R. MTA family of proteins in DNA damage response: mechanistic insights and potential applications. Cancer Metastasis Rev 33, 993–1000 (2014). https://doi.org/10.1007/s10555-014-9524-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9524-2

Keywords

Navigation