Skip to main content
Log in

Parametric mapping by cardiovascular magnetic resonance imaging in sudden cardiac arrest survivors

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Etiology of sudden cardiac arrest (SCA) is identified in less than 30% of survivors without coronary artery disease. We sought to assess the diagnostic role of myocardial parametric mapping using cardiovascular magnetic resonance (CMR) in identifying SCA etiology. Consecutive SCA survivors undergoing CMR with myocardial parametric mapping were included in the study. The determination if CMR was decisive or contributory in identifying SCA etiology was made if the diagnosis was unclear prior to CMR, and the discharge diagnosis was consistent with the CMR result. Parametric mapping was considered essential for establishing probable SCA etiology by CMR if the SCA cause could not have been determined without its utilization. If the CMR diagnosis could have been potentially based on the combination of cine and LGE imaging, parametric mapping was considered contributory. Of the 35 patients (mean age 46.9 ± 14.1 years; 57% males) included, SCA diagnosis was based on CMR in 23 (66%) patients. Of those, parametric mapping was essential for the diagnosis of myocarditis and tako-tsubo cardiomyopathy (11/48%) and contributed to the diagnosis in 10 (43%) additional cases. Inclusion of quantitative T1 and T2 parametric mapping in the SCA CMR protocol has the potential to increase diagnostic yield of CMR and further specify SCA etiology, especially myocarditis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carter-Monroe N, Virmani R (2011) Current trends in the classification of sudden cardiac death based on autopsy derived data: a review of investigations into the etiology of sudden cardiac death. Revista Española de Cardiología (English Edition) 64(1):10–12. https://doi.org/10.1016/j.recesp.2010.09.004

    Article  Google Scholar 

  2. Zareba W, Zareba KM (2017) Cardiac magnetic resonance in sudden cardiac arrest survivors. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.117.007290

    Article  PubMed  Google Scholar 

  3. Zorzi A, Susana A, de Lazzari M, Migliore F, Vescovo G, Scarpa D et al (2018) Diagnostic value and prognostic implications of early cardiac magnetic resonance in survivors of out-of-hospital cardiac arrest. Heart Rhythm 15(7):1031–1041. https://doi.org/10.1016/j.hrthm.2018.02.033

    Article  PubMed  Google Scholar 

  4. Ojrzyńska-Witek N, Marczak M, Mazurkiewicz Ł, Petryka-Mazurkiewicz J, Miłosz-Wieczorek B, Grzybowski J et al (2022) Sudden cardiac arrest: focus on cardiac magnetic resonance. Kardiol Pol 80(1):87–89. https://doi.org/10.33963/KP.a2021.0151

    Article  PubMed  Google Scholar 

  5. Zaremba T, Brøndberg AK, Jensen HK, Kim WY (2018) Cardiac magnetic resonance characteristics in young survivors of aborted sudden cardiac death. Eur J Radiol 105:141–147. https://doi.org/10.1016/j.ejrad.2018.06.004

    Article  PubMed  Google Scholar 

  6. Swoboda P, Kidambi A, Uddin A, McDiarmid A, Ripley D, Greenwood J et al (2014) Cardiovascular magnetic resonance is valuable in the investigation of aborted sudden cardiac death. Heart 100(Suppl 3):A71.2-A72. https://doi.org/10.1136/heartjnl-2014-306118.125

    Article  Google Scholar 

  7. Rodrigues P, Joshi A, Williams H, Westwood M, Petersen SE, Zemrak F et al (2017) Diagnosis and prognosis in sudden cardiac arrest survivors without coronary artery disease: utility of a clinical approach using cardiac magnetic resonance imaging. Circ Cardiovasc Imaging 10(12):e006709. https://doi.org/10.1161/CIRCIMAGING.117.006709

    Article  PubMed  Google Scholar 

  8. O’Brien AT, Gil KE, Varghese J, Simonetti OP, Zareba KM (2022) T2 mapping in myocardial disease: a comprehensive review. J Cardiovasc Magn Reson 24:33. https://doi.org/10.1186/s12968-022-00866-0

    Article  PubMed  PubMed Central  Google Scholar 

  9. Giri S, Chung YC, Merchant A, Mihai G, Rajagopalan S, Raman Sv et al (2009) T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson 11(1):56. https://doi.org/10.1186/1532-429X-11-56

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wong TC, Piehler KM, Kang IA, Kadakkal A, Kellman P, Schwartzman DS et al (2014) Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J 35(10):657–664. https://doi.org/10.1093/eurheartj/eht193

    Article  CAS  PubMed  Google Scholar 

  11. Schelbert EB, Piehler KM, Zareba KM, Moon JC, Ugander M, Messroghli DR et al (2015) Myocardial fibrosis quantified by extracellular volume is associated with subsequent hospitalization for heart failure, death, or both across the spectrum of ejection fraction and heart failure stage. J Am Heart Assoc. https://doi.org/10.1161/JAHA.115.002613

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cheng RK, Masri SC (2019) Extracellular volume as an imaging biomarker for incident heart failure. Circ Cardiovasc Imaging 12(12):10152. https://doi.org/10.1161/CIRCIMAGING.119.010152

    Article  Google Scholar 

  13. Laohabut I, Songsangjinda T, Kaolawanich Y, Yindeengam A, Krittayaphong R (2021) Myocardial extracellular volume fraction and T1 mapping by cardiac magnetic resonance compared between patients with and without type 2 diabetes, and the effect of ECV and T2D on cardiovascular outcomes. Front Cardiovasc Med 7:1725. https://doi.org/10.3389/fcvm.2021.771363

    Article  Google Scholar 

  14. Youn JC, Hong YJ, Lee HJ, Han K, Shim CY, Hong GR et al (2017) Contrast-enhanced T1 mapping-based extracellular volume fraction independently predicts clinical outcome in patients with non-ischemic dilated cardiomyopathy: a prospective cohort study. Eur Radiol 27(9):3924–3933. https://doi.org/10.1007/s00330-017-4817-9

    Article  PubMed  Google Scholar 

  15. Schelbert EB, Fridman Y, Wong TC, Abu Daya H, Piehler KM, Kadakkal A et al (2017) Temporal relation between myocardial fibrosis and heart failure with preserved ejection fraction: association with baseline disease severity and subsequent outcome. JAMA Cardiol 2(9):995–1006. https://doi.org/10.1001/jamacardio.2017.2511

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kramer CM, Barkhausen J, Bucciarelli-Ducci C, Flamm SD, Kim RJ, Nagel E (2020) Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn 22(1):1–18. https://doi.org/10.1186/s12968-020-00607-1

    Article  Google Scholar 

  17. Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S (2016) Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson 18(1):1–12. https://doi.org/10.1186/s12968-016-0308-4

    Article  Google Scholar 

  18. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 105(4):539–542. https://doi.org/10.1161/hc0402.102975

    Article  PubMed  Google Scholar 

  19. Aquaro GD, Perfetti M, Camastra G, Monti L, Dellegrottaglie S, Moro C et al (2017) Cardiac MR with late gadolinium enhancement in acute myocarditis with preserved systolic function: ITAMY study. J Am Coll 70(16):1977–1987. https://doi.org/10.1016/j.jacc.2017.08.044

    Article  Google Scholar 

  20. Maron BJ, Maron MS (2016) LGE means better selection of HCM patients for primary prevention implantable defibrillators. JACC: Cardiovasc Imaging 9(12):1403–1406. https://doi.org/10.1016/j.jcmg.2016.01.032

    Article  PubMed  Google Scholar 

  21. Bozkurt B, Colvin M, Cook J, Cooper LT, Deswal A, Fonarow GC et al (2016) Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American Heart Association. Circulation 134:e579–e646. https://doi.org/10.1161/CIR.0000000000000455

    Article  PubMed  Google Scholar 

  22. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D et al (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation 113(14):1807–1816. https://doi.org/10.1161/CIRCULATIONAHA.106.174287

    Article  PubMed  Google Scholar 

  23. Singh T, Khan H, Gamble DT, Scally C, Newby DE, Dawson D (2022) Takotsubo syndrome: pathophysiology, emerging concepts, and clinical implications. Circulation 145(13):1002–1019. https://doi.org/10.1161/CIRCULATIONAHA.121.055854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thavendiranathan P, Walls M, Giri S, Verhaert D, Rajagopalan S, Moore S et al (2012) Improved detection of myocardial involvement in acute inflammatory cardiomyopathies using T2 mapping. Circ Cardiovasc Imaging 5(1):102–110. https://doi.org/10.1161/CIRCIMAGING.111.967836

    Article  PubMed  Google Scholar 

  25. Wu KC (2017) Sudden cardiac death substrate imaged by magnetic resonance imaging: from investigational tool to clinical applications. Circ Cardiovasc Imaging 10(7):e005461. https://doi.org/10.1161/CIRCIMAGING.116.005461

    Article  PubMed  PubMed Central  Google Scholar 

  26. Baritussio A, Zorzi A, Ghosh Dastidar A, Susana A, Mattesi G, Rodrigues JCL et al (2017) Out of hospital cardiac arrest survivors with inconclusive coronary angiogram: impact of cardiovascular magnetic resonance on clinical management and decision-making. Resuscitation 116:91–97. https://doi.org/10.1016/j.resuscitation.2017.03.039

    Article  CAS  PubMed  Google Scholar 

  27. Tschöpe C, Ammirati E, Bozkurt B, Caforio ALP, Cooper LT, Felix SB et al (2021) Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat Rev Cardiol 18(3):169–193. https://doi.org/10.1038/s41569-020-00435-x

    Article  CAS  PubMed  Google Scholar 

  28. von Knobelsdorff-Brenkenhoff F, Schüler J, Dogangüzel S, Dieringer MA, Rudolph A, Greiser A et al (2017) Detection and monitoring of acute myocarditis applying quantitative cardiovascular magnetic resonance. Circ Cardiovasc Imaging 10(2):1–10. https://doi.org/10.1161/CIRCIMAGING.116.005242

    Article  Google Scholar 

  29. Grun S, Schumm J, Greulich S, Wagner A, Schneider S, Bruder O et al (2012) Long-term follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol 59(18):1604–1615. https://doi.org/10.1016/j.jacc.2012.01.007

    Article  PubMed  Google Scholar 

  30. Spieker M, Katsianos E, Gastl M, Behm P, Horn P, Jacoby C et al (2018) T2 mapping cardiovascular magnetic resonance identifies the presence of myocardial inflammation in patients with dilated cardiomyopathy as compared to endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 19(5):574–582. https://doi.org/10.1093/ehjci/jex230

    Article  CAS  PubMed  Google Scholar 

  31. Løgstrup BB, Nielsen JM, Kim WY, Poulsen SH (2016) Myocardial oedema in acutemyocarditis detected by echocardiographic 2Dmyocardial deformation analysis. Eur Heart J Cardiovasc Imaging 17(9):1018–1026. https://doi.org/10.1093/ehjci/jev302

    Article  PubMed  Google Scholar 

  32. Ruppert V, Meyer T, Pankuweit S, Möller E, Funck RC, Grimm W et al (2008) Gene expression profiling from endomyocardial biopsy tissue allows distinction between subentities of dilated cardiomyopathy. J Thorac Cardiovasc Surg 136(2):360-369.e1. https://doi.org/10.1016/j.jtcvs.2008.03.016

    Article  CAS  PubMed  Google Scholar 

  33. Ammirati E, Frigerio M, Adler ED, Basso C, Birnie DH, Brambatti M et al (2020) Management of acute myocarditis and chronic inflammatory cardiomyopathy: an expert consensus document. Circ Heart Fail 13(11):e007405. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007405

    Article  PubMed  PubMed Central  Google Scholar 

  34. Spieker M, Haberkorn S, Gastl M, Behm P, Katsianos S, Horn P et al (2017) Abnormal T2 mapping cardiovascular magnetic resonance correlates with adverse clinical outcome in patients with suspected acute myocarditis. J Cardiovasc Magn Reson 19(1):38. https://doi.org/10.1186/s12968-017-0350-x

    Article  PubMed  PubMed Central  Google Scholar 

  35. Caforio ALP, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix SB et al (2013) Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on myocardial and pericardial diseases. Eur Heart J 34(33):2636–2648. https://doi.org/10.1093/eurheartj/eht210

    Article  PubMed  Google Scholar 

  36. Dass S, Suttie JJ, Piechnik SK, Ferreira VM, Holloway CJ, Banerjee R et al (2012) Myocardial tissue characterization using magnetic resonance noncontrast T1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging 5(6):726–733. https://doi.org/10.1161/CIRCIMAGING.112.976738

    Article  PubMed  Google Scholar 

  37. Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U et al (2018) Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol 72(24):3158–3176. https://doi.org/10.1016/j.jacc.2018.09.072

    Article  PubMed  Google Scholar 

  38. Rodrigues P, Joshi A, Williams H, Westwood M, Petersen SE, Zemrak F et al (2017) Diagnosis and prognosis in sudden cardiac arrest survivors without coronary artery disease: utility of a clinical approach using cardiac magnetic resonance imaging. Circ Cardiovasc Imaging 10(12):006709. https://doi.org/10.1161/CIRCIMAGING.117.006709

    Article  Google Scholar 

  39. Baig M, Galazka P, Dakwar O, Syed SA, Sawlani R, Shahir K et al (2021) Prevalence of myocardial edema with T2 mapping in hypertrophic cardiomyopathy. J Am Coll Cardiol 77:1303. https://doi.org/10.1016/S0735-1097(21)02661-9

    Article  Google Scholar 

  40. Bönner F, Spieker M, Haberkorn S, Jacoby C, Flögel U, Schnackenburg B et al (2016) Myocardial T2 mapping increases noninvasive diagnostic accuracy for biopsy-proven myocarditis. JACC: Cardiovasc Imaging 9:1467–1469. https://doi.org/10.1016/j.jcmg.2015.11.014

    Article  PubMed  Google Scholar 

  41. Lurz P, Luecke C, Eitel I, Föhrenbach F, Frank C, Grothoff M et al (2016) Comprehensive cardiac magnetic resonance imaging in patients with suspected myocarditis the myoracer-trial. J Am Coll Cardiol 67(15):1800–1811. https://doi.org/10.1016/j.jacc.2016.02.013

    Article  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by KEG, VTT, KMZ and SR. The first draft of the manuscript was written by KEG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Katarzyna E. Gil.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 638 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil, K.E., Truong, V.T., Zareba, K.M. et al. Parametric mapping by cardiovascular magnetic resonance imaging in sudden cardiac arrest survivors. Int J Cardiovasc Imaging 39, 1547–1555 (2023). https://doi.org/10.1007/s10554-023-02864-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-023-02864-4

Keywords

Navigation