Skip to main content
Log in

Quantitative myocardial T2 mapping adds value to Japanese circulation society diagnostic criteria for active cardiac sarcoidosis

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Noninvasive identification of active myocardial inflammation in patients with cardiac sarcoidosis plays a key role in management but remains elusive. T2 mapping is a proposed solution, but the added value of quantitative myocardial T2 mapping for active cardiac sarcoidosis is unknown. Retrospective cohort analysis of 56 sequential patients with biopsy-confirmed extracardiac sarcoidosis who underwent cardiac MRI for myocardial T2 mapping. The presence or absence of active myocardial inflammation in patients with CS was defined using a modified Japanese circulation society criteria within one month of MRI. Myocardial T2 values were obtained for the 16 standard American Heart Association left ventricular segments. The best model was selected using logistic regression. Receiver operating characteristic curves and dominance analysis were used to evaluate the diagnostic performance and variable importance. Of the 56 sarcoidosis patients included, 14 met criteria for active myocardial inflammation. Mean basal T2 value was the best performing model for the diagnosis of active myocardial inflammation in CS patients (pR2 = 0.493, AUC = 0.918, 95% CI 0.835–1). Mean basal T2 value > 50.8 ms was the most accurate threshold (accuracy = 0.911). Mean basal T2 value + JCS criteria was significantly more accurate than JCS criteria alone (AUC = 0.981 vs. 0.887, p = 0.017). Quantitative regional T2 values are independent predictors of active myocardial inflammation in CS and may add additional discriminatory capability to JCS criteria for active disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data underlying this article cannot be shared publicly due the use of patient-level clinical and imaging data. The data may be available upon reasonable request to the corresponding author.

References

  1. Swigris JJ et al (2011) Sarcoidosis-related mortality in the United States from 1988 to 2007. Am J Respir Crit Care Med 183(11):1524–1530. https://doi.org/10.1164/rccm.201010-1679OC

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rosenthal DG, Bravo PE, Patton KK, Goldberger ZD (2015) Management of arrhythmias in cardiac sarcoidosis. Clin Cardiol 38(10):635–640. https://doi.org/10.1002/clc.22430

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zipse MM, Sauer WH (2015) Cardiac sarcoidosis and consequent arrhythmias. Card Electrophysiol Clin 7(2):235–249. https://doi.org/10.1016/j.ccep.2015.03.006

    Article  PubMed  Google Scholar 

  4. Chareonthaitawee P et al (2017) Joint SNMMI-ASNC expert consensus document on the role of (18)F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Cardiol 24(5):1741–1758. https://doi.org/10.1007/s12350-017-0978-9

    Article  PubMed  Google Scholar 

  5. Birnie DH et al (2014) HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm 11(7):1305–1323. https://doi.org/10.1016/j.hrthm.2014.03.043

    Article  PubMed  Google Scholar 

  6. Patel MR et al (2009) Detection of myocardial damage in patients with sarcoidosis. Circulation 120(20):1969–1977. https://doi.org/10.1161/CIRCULATIONAHA.109.851352

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hiraga H, Iwai K, Hiroe M, Omori F, Sekiguchi M, Tachibana T (1993) Guideline for diagnosis of cardiac sarcoidosis: study report on diffuse pulmonary diseases from the Japanese Ministry of Health and Welfare. Japanese Ministry of Health and Welfare, Tokyo, pp 23–24

    Google Scholar 

  8. Hiraga H, Yuwai K, Hiroe M (2007) Diagnostic standard and guidelines for sarcoidosis. Jpn J Sarcoidosis Granulomatous Disord 27:89–102

    Google Scholar 

  9. Terasaki F et al (2019) JCS 2016 guideline on diagnosis and treatment of cardiac sarcoidosis—digest version. Circ J 83(11):2329–2388. https://doi.org/10.1253/circj.CJ-19-0508

    Article  PubMed  Google Scholar 

  10. Rastegar N et al (2014) Cardiac MR findings and potential diagnostic pitfalls in patients evaluated for arrhythmogenic right ventricular cardiomyopathy. Radiographics 34(6):1553–1570. https://doi.org/10.1148/rg.346140194

    Article  PubMed  Google Scholar 

  11. Flamee L et al (2020) Prognostic value of cardiovascular magnetic resonance in patients with biopsy-proven systemic sarcoidosis. Eur Radiol 30(7):3702–3710. https://doi.org/10.1007/s00330-020-06765-1

    Article  PubMed  Google Scholar 

  12. Germain P et al (2014) Native T1 mapping of the heart—a pictorial review. Clin Med Insights Cardiol 8(Suppl 4):1–11. https://doi.org/10.4137/CMC.S19005

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wassmuth R, Schulz-Menger J (2011) Cardiovascular magnetic resonance imaging of myocardial inflammation. Expert Rev Cardiovasc Ther 9(9):1193–1201. https://doi.org/10.1586/erc.11.118

    Article  PubMed  Google Scholar 

  14. Crouser ED, Ruden E, Julian MW, Raman SV (2016) Resolution of abnormal cardiac MRI T2 signal following immune suppression for cardiac sarcoidosis. J Investig Med 64(6):1148–1150. https://doi.org/10.1136/jim-2016-000144

    Article  PubMed  Google Scholar 

  15. Vita T et al (2018) Complementary value of cardiac magnetic resonance imaging and positron emission tomography/computed tomography in the assessment of cardiac sarcoidosis. Circ Cardiovasc Imaging 11(1):e007030. https://doi.org/10.1161/CIRCIMAGING.117.007030

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hulten E, Aslam S, Osborne M, Abbasi S, Bittencourt MS, Blankstein R (2016) Cardiac sarcoidosis-state of the art review. Cardiovasc Diagn Ther 6(1):50–63. https://doi.org/10.3978/j.issn.2223-3652.2015.12.13

    Article  PubMed  PubMed Central  Google Scholar 

  17. Orii M, Imanishi T, Akasaka T (2014) Assessment of cardiac sarcoidosis with advanced imaging modalities. Biomed Res Int 2014:897956. https://doi.org/10.1155/2014/897956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Puntmann VO, Isted A, Hinojar R, Foote L, Carr-White G, Nagel E (2017) T1 and T2 mapping in recognition of early cardiac involvement in systemic sarcoidosis. Radiology 285(1):63–72. https://doi.org/10.1148/radiol.2017162732

    Article  PubMed  Google Scholar 

  19. Burt JR, Zimmerman SL, Kamel IR, Halushka M, Bluemke DA (2014) Myocardial T1 mapping: techniques and potential applications. Radiographics 34(2):377–395. https://doi.org/10.1148/rg.342125121

    Article  PubMed  Google Scholar 

  20. Cerqueira MD et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American heart association. Int J Cardiovasc Imaging 18(1):539–542

    PubMed  Google Scholar 

  21. Ganeshan D, Menias CO, Lubner MG, Pickhardt PJ, Sandrasegaran K, Bhalla S (2018) Sarcoidosis from head to toe: what the radiologist needs to know. Radiographics 38(4):1180–1200. https://doi.org/10.1148/rg.2018170157

    Article  PubMed  Google Scholar 

  22. Chamberlin J et al (2020) Accuracy of myocardial native t2 for the diagnosis of active cardiac sarcoidosis. Chest. https://doi.org/10.1016/j.chest.2020.09.045

    Article  Google Scholar 

  23. Dabir D, Luetkens J, Kuetting D, Nadal J, Schild HH, Thomas D (2021) Myocardial mapping in systemic sarcoidosis: a comparison of two measurement approaches. Rofo 193(1):68–76. https://doi.org/10.1055/a-1174-0537

    Article  PubMed  Google Scholar 

  24. Lu C et al (2022) Predicting adverse cardiac events in sarcoidosis: deep learning from automated characterization of regional myocardial remodeling. Int J Cardiovasc Imaging. https://doi.org/10.1007/s10554-022-02564-5

    Article  PubMed  PubMed Central  Google Scholar 

  25. Aitken M et al (2022) Diagnostic accuracy of cardiac MRI versus FDG PET for cardiac sarcoidosis: a systematic review and meta-analysis. Radiology. https://doi.org/10.1148/radiol.213170

    Article  PubMed  Google Scholar 

  26. Greulich S et al (2022) Hybrid cardiac magnetic resonance/fluorodeoxyglucose positron emission tomography to differentiate active from chronic cardiac sarcoidosis. JACC Cardiovasc Imaging 15(3):445–456. https://doi.org/10.1016/j.jcmg.2021.08.018

    Article  PubMed  Google Scholar 

  27. Bohnen S et al (2015) Performance of t1 and t2 mapping cardiovascular magnetic resonance to detect active myocarditis in patients with recent-onset heart failure. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.114.003073

    Article  PubMed  Google Scholar 

  28. Bakker AL, Grutters JC, Keijsers RG, Post MC (2017) Cardiac sarcoidosis: challenges in clinical practice. Curr Opin Pulm Med 23(5):468–475. https://doi.org/10.1097/MCP.0000000000000410

    Article  PubMed  Google Scholar 

  29. Aitken M et al (2023) Prognostic value of cardiac MRI and FDG PET in cardiac sarcoidosis: a systematic review and meta-analysis. Radiology 307(2):e222483. https://doi.org/10.1148/radiol.222483

    Article  PubMed  Google Scholar 

  30. Cheung E et al (2021) Combined simultaneous FDG-PET/MRI with T1 and T2 mapping as an imaging biomarker for the diagnosis and prognosis of suspected cardiac sarcoidosis. Eur J Hybrid Imaging 5(1):24. https://doi.org/10.1186/s41824-021-00119-w

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schindler TH, Valenta I (2022) Another step toward integrated MR/PET as favored imaging modality in cardiac sarcoidosis. JACC Cardiovasc Imaging 15(3):457–459. https://doi.org/10.1016/j.jcmg.2021.12.012

    Article  PubMed  Google Scholar 

  32. Wand AL, Chrispin J, Saad E, Mukherjee M, Hays AG, Gilotra NA (2021) Current state and future directions of multimodality imaging in cardiac sarcoidosis. Front Cardiovasc Med 8:785279. https://doi.org/10.3389/fcvm.2021.785279

    Article  CAS  PubMed  Google Scholar 

  33. Tonegawa-Kuji R et al (2021) T2-weighted short-tau-inversion-recovery imaging reflects disease activity of cardiac sarcoidosis. Open Heart. https://doi.org/10.1136/openhrt-2021-001728

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mankad P, Mitchell B, Birnie D, Kron J (2019) Cardiac sarcoidosis. Curr Cardiol Rep 21(12):152. https://doi.org/10.1007/s11886-019-1238-1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Jordan H. Chamberlin MD, Madison R. Kocher MD, Gilberto Aquino MD, Austin Fullenkamp MD, Natalie Stringer MD, Andrew Wortham BS, Akos Varga-Szemes, MD, PhD, and Jeremy R. Burt MD. The first draft of the manuscript was written by Jordan Chamberlin and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jeremy R. Burt.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This is an observational study without inclusion of protected health information (PHI). The Medical University of South Carolina Research Ethics Committee has confirmed that no ethical approval is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.—Supplemental Figure 1 T2 mapping values sorted by diagnosis of cardiac sarcoidosis with active myocardial inflammation for each AHA left ventricular segment. All segments from patients with active myocardial inflammation were significantly elevated (p < 0.05 for all).

10554_2023_2863_MOESM1_ESM.jpg

Supplementary file1 (JPG 306 kb)—Supplemental Figure 1 T2 mapping values sorted by diagnosis of cardiac sarcoidosis with active myocardial inflammation for each AHA left ventricular segment. All segments from patients with active myocardial inflammation were significantly elevated (p < 0.05 for all).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamberlin, J.H., Kocher, M.R., Aquino, G. et al. Quantitative myocardial T2 mapping adds value to Japanese circulation society diagnostic criteria for active cardiac sarcoidosis. Int J Cardiovasc Imaging 39, 1535–1546 (2023). https://doi.org/10.1007/s10554-023-02863-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-023-02863-5

Keywords

Navigation