Skip to main content

Advertisement

Log in

Usefulness of second trimester left ventricular global longitudinal strain for predicting adverse maternal outcome in pregnant women aged 35 years or older

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The present study was primarily designed to accurately determine biventricular and biatrial myocardial function, assessed by two-dimensional speckle tracking echocardiography (2D-STE), in a prospective cohort of pregnant women aged ≥ 35 years, at the second trimester of pregnancy. Secondly, we aimed at investigating the main independent predictors of adverse maternal outcome (AMO) in the same study population. 80 consecutive pregnant women aged ≥ 35 years, 80 gestational week-matched (18.4 ± 1.6 vs 18.5 ± 1.8 weeks, p = 0.71) pregnant women aged < 35 years and 80 non-pregnant women aged ≥ 35 years without any comorbidity were included in this prospective study. All pregnant women underwent obstetric evaluation, modified Haller index (MHI) assessment and a conventional two-dimensional transthoracic echocardiography implemented with complete 2D-STE analysis of both ventricles and atria at the second trimester of pregnancy. AMO was defined as the occurrence of any of the following: gestational hypertension (GH) including preeclampsia; gestational diabetes mellitus (GDM); preterm delivery (PD); emergency caesarean section (ECS); postpartum haemorrhage (PPH); premature rupture of membranes (PROM); maternal death. Compared to younger pregnant women, pregnant women aged ≥ 35 years were more likely to be found with: (1) body mass index (BMI) ≥ 30 kg/m2 (37.5% of total); (2) significantly increased inflammatory markers; (3) significantly greater left ventricular mass index; (4) significantly impaired hemodynamics; (5) significantly reduced bi-atrial and bi-ventricular myocardial strain parameters, despite normal ejection fraction. A strong inverse correlation between second trimester BMI and left ventricular (LV)-global longitudinal strain (GLS) (r =  − 0.84) and between second trimester MHI and LV-GLS (r =  − 0.81) was demonstrated in pregnant women aged ≥ 35 years. GH, GDM, PD, ECS, PPH and PROM were detected in 15%, 12.5%, 10%, 8.7%, 8.7% and 7.5% of women, respectively. Age (OR 2.04, 95% CI 1.46–2.84), second trimester BMI (OR 2.40, 95% CI 1.64–3.51) and second trimester LV-GLS (OR 0.07, 95%C I 0.01–0.34) were independently associated with outcome. Age ≥ 37 years, BMI ≥ 30 kg/m2 and LV-GLS less negative than − 18% were the best cut-off values for predicting AMO. A LV-GLS less negative than − 18% allows to identify, among older pregnant women, those with an increased risk of AMO. Both intrinsic myocardial dysfunction and extrinsic compressive mechanical phenomena might affect global myocardial deformation during gestation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

A-P:

Antero-posterior

AUC:

Area under the curve

BMI:

Body mass index

BSA:

Body surface area

CI:

Confidence interval

DBP:

Diastolic blood pressure

EaI:

Arterial elastance index

EesI:

End-systolic elastance index

eGFR:

Estimated glomerular filtration rate

ESP:

End-systolic pressure

GCS:

Global circumferential strain

GLS:

Global longitudinal strain

GRS:

Global radial strain

GSA+:

Positive global atrial strain

GSA−:

Negative global atrial strain

ICC:

Intraclass correlation coefficient

LA:

Left atrial

L-L:

Latero-lateral

LV:

Left ventricular

LVEF:

Left ventricular ejection fraction.

LVESVi:

Left ventricular end-systolic volume index

LVMi:

Left ventricular mass index

LVOT:

Left ventricular outflow tract

MAP:

Mean arterial pressure

MAPSE:

Mitral annular plane systolic excursion

MHI:

Modified Haller index

NLR:

Neutrophil-to-lymphocyte ratio

OGTT:

Glucose tolerance test

RDW:

Red cell distribution width

ROC:

Receiver operating characteristics

RA:

Right atrial

RV:

Right ventricular

RWT:

Relative wall thickness

SBP:

Systolic blood pressure

SPAP:

Systolic pulmonary artery pressure

STE:

Speckle tracking echocardiography

SV:

Stroke volume

TAPSE:

Tricuspid annular plane systolic excursion

TGSA:

Total global atrial strain

TPR:

Total peripheral resistance

TTE:

Transthoracic echocardiography

VAC:

Ventricular-arterial coupling

References

  1. Li CL, Wang YH, Wang JL, Zhang P, Sun Y (2021) Effect of individualized medical nutrition guidance on pregnancy outcomes in older pregnant women. J Int Med Res. https://doi.org/10.1177/03000605211033193

    Article  PubMed  PubMed Central  Google Scholar 

  2. Marozio L, Picardo E, Filippini C et al (2019) Maternal age over 40 years and pregnancy outcome: a hospital-based survey. J Matern Fetal Neonatal Med 32:1602–1608

    Article  PubMed  Google Scholar 

  3. Jackson S, Hong C, Wang ET, Alexander C, Gregory KD, Pisarska MD (2015) Pregnancy outcomes in very advanced maternal age pregnancies: the impact of assisted reproductive technology. Fertil Steril 103:76–80

    Article  PubMed  Google Scholar 

  4. Lean SC, Derricott H, Jones RL, Heazell AEP (2017) Advanced maternal age and adverse pregnancy outcomes: A systematic review and meta-analysis. PLoS ONE 12:e0186287

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sheen JJ, Wright JD, Goffman D et al (2018) Maternal age and risk for adverse outcomes. Am J Obstet Gynecol 219:390.e1-390.e15

    Article  PubMed  Google Scholar 

  6. Pinheiro RL, Areia AL, Mota Pinto A, Donato H (2019) Advanced maternal age: adverse outcomes of pregnancy, a meta-analysis. Acta Med Port 32:219–226

    Article  PubMed  Google Scholar 

  7. Kenny LC, Lavender T, McNamee R, O’Neill SM, Mills T, Khashan AS (2013) Advanced maternal age and adverse pregnancy outcome: evidence from a large contemporary cohort. PLoS ONE 8:e56583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frederiksen LE, Ernst A, Brix N et al (2018) Risk of adverse pregnancy outcomes at advanced maternal age. Obstet Gynecol 131:457–463

    Article  PubMed  Google Scholar 

  9. Sydsjö G, Lindell Pettersson M, Bladh M, Skoog Svanberg A, Lampic C, Nedstrand E (2019) Evaluation of risk factors’ importance on adverse pregnancy and neonatal outcomes in women aged 40 years or older. BMC Pregnancy Childbirth 19:92

    Article  PubMed  PubMed Central  Google Scholar 

  10. Canhaço EE, Bergamo AM, Lippi UG, Lopes RG (2015) Perinatal outcomes in women over 40 years of age compared to those of other gestations. Einstein (Sao Paulo) 13:58–64

    Article  PubMed  Google Scholar 

  11. Oakley L, Penn N, Pipi M, Oteng-Ntim E, Doyle P (2016) Risk of adverse obstetric and neonatal outcomes by maternal age: quantifying individual and population level risk using routine UK maternity data. PLoS ONE 11:e0164462

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang X, Xu H, Hu R et al (2019) Changing trends of adverse pregnancy outcomes with maternal age in primipara with singleton birth: a join point analysis of a multicenter historical cohort study in China in 2011–2012. Acta Obstet Gynecol Scand 98:997–1003

    Article  CAS  PubMed  Google Scholar 

  13. Bouzaglou A, Aubenas I, Abbou H et al (2020) Pregnancy at 40 years old and above: obstetrical, fetal, and neonatal outcomes. Is age an independent risk factor for those complications? Front Med (Lausanne) 7:208

    Article  PubMed  Google Scholar 

  14. Marchi J, Berg M, Dencker A, Olander EK, Begley C (2015) Risks associated with obesity in pregnancy, for the mother and baby: a systematic review of reviews. Obes Rev 16:621–638

    Article  CAS  PubMed  Google Scholar 

  15. Catalano PM, Shankar K (2017) Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. BMJ 356:j1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dolin CD, Kominiarek MA (2018) Pregnancy in women with obesity. Obstet Gynecol Clin North Am 45:217–232

    Article  PubMed  Google Scholar 

  17. Lewandowska M, Sajdak S, Więckowska B, Manevska N, Lubiński J (2020) The influence of maternal BMI on adverse pregnancy outcomes in older women. Nutrients 12:2838

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sonaglioni A, Lonati C, Lombardo M et al (2019) Incremental prognostic value of global left atrial peak strain in women with new-onset gestational hypertension. J Hypertens 37:1668–1675

    Article  CAS  PubMed  Google Scholar 

  19. Sonaglioni A, Caminati A, Lipsi R et al (2020) (2020) Early left atrial dysfunction in idiopathic pulmonary fibrosis patients without chronic right heart failure. Int J Cardiovasc Imaging 36:1711–1723

    Article  PubMed  Google Scholar 

  20. Sonaglioni A, Cara MD, Nicolosi GL et al (2021) Rapid risk stratification of acute ischemic stroke patients in the emergency department: the incremental prognostic role of left atrial reservoir strain. J Stroke Cerebrovasc Dis 30:106100

    Article  PubMed  Google Scholar 

  21. Savu O, Jurcuţ R, Giuşcă S et al (2012) Morphological and functional adaptation of the maternal heart during pregnancy. Circ Cardiovasc Imaging 5:289–297

    Article  PubMed  Google Scholar 

  22. Cong J, Fan T, Yang X et al (2015) Structural and functional changes in maternal left ventricle during pregnancy: a three-dimensional speckle-tracking echocardiography study. Cardiovasc Ultrasound 13:6

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sengupta SP, Bansal M, Hofstra L, Sengupta PP, Narula J (2017) Gestational changes in left ventricular myocardial contractile function: new insights from two-dimensional speckle tracking echocardiography. Int J Cardiovasc Imaging 33:69–82

    Article  PubMed  Google Scholar 

  24. Ando T, Kaur R, Holmes AA, Brusati A, Fujikura K, Taub CC (2015) Physiological adaptation of the left ventricle during the second and third trimesters of a healthy pregnancy: a speckle tracking echocardiography study. Am J Cardiovasc Dis 5:119–126

    PubMed  PubMed Central  Google Scholar 

  25. Meah VL, Backx K, Cockcroft JR, Shave RE, Stöhr EJ (2019) Left ventricular mechanics in late second trimester of healthy pregnancy. Ultrasound Obstet Gynecol 54:350–358

    Article  CAS  PubMed  Google Scholar 

  26. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470

    Article  CAS  PubMed  Google Scholar 

  27. Sonaglioni A, Baravelli M, Vincenti A et al (2018) A New modified anthropometric haller index obtained without radiological exposure. Int J Cardiovasc Imaging 34:1505–1509

    Article  PubMed  Google Scholar 

  28. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39

    Article  PubMed  Google Scholar 

  29. Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29:277–314

    Article  PubMed  Google Scholar 

  30. Devereux RB, Alonso DR, Lutas EM et al (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458

    Article  CAS  PubMed  Google Scholar 

  31. Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713

    Article  PubMed  Google Scholar 

  32. Hill LK, Sollers Iii JJ, Thayer JF (2013) Resistance reconstructed estimation of total peripheral resistance from computationally derived cardiac output – biomed 2013. Biomed Sci Instrum 49:216–223

    PubMed  PubMed Central  Google Scholar 

  33. Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA (2005) Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation 112:2254–2262

    Article  PubMed  Google Scholar 

  34. Chen CH, Fetics B, Nevo E et al (2001) Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol 38:2028–2034

    Article  CAS  PubMed  Google Scholar 

  35. Chantler PD, Lakatta EG (1985) Najjar SS (2008) Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. J Appl Physiol 105:1342–1351

    Article  Google Scholar 

  36. Muraru D, Onciul S, Peluso D et al (2016) Sex- and method-specific reference values for right ventricular strain by 2-dimensional speckle-tracking echocardiography. Circ Cardiovasc Imaging 9:e003866

    Article  PubMed  Google Scholar 

  37. Sonaglioni A, Vincenti A, Baravelli M et al (2019) Prognostic value of global left atrial peak strain in patients with acute ischemic stroke and no evidence of atrial fibrillation. Int J Cardiovasc Imaging 35:603–613

    Article  PubMed  Google Scholar 

  38. Galderisi M, Cosyns B, Edvardsen T et al (2017) Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 18:1301–1310

    Article  PubMed  Google Scholar 

  39. Sugimoto T, Dulgheru R, Bernard A et al (2017) Echocardiographic reference ranges for normal left ventricular 2D strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging 18:833–840

    Article  PubMed  Google Scholar 

  40. Wang TKM, Grimm RA, Rodriguez LL, Collier P, Griffin BP, Popović ZB (2021) Defining the reference range for right ventricular systolic strain by echocardiography in healthy subjects: a meta-analysis. PLoS ONE 16:e0256547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 26:185–191

    Article  PubMed  Google Scholar 

  42. Sugimoto T, Robinet S, Dulgheru R et al (2018) Echocardiographic reference ranges for normal left atrial function parameters: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging 19:630–638

    Article  PubMed  Google Scholar 

  43. Brand A, Bathe M, Hübscher A et al (2018) Normative reference data, determinants, and clinical implications of right atrial reservoir function in women assessed by 2D speckle-tracking echocardiography. Echocardiography 35:1542–1549

    Article  PubMed  Google Scholar 

  44. Patwardhan M, Eckert LO, Spiegel H et al (2016) Maternal death: Case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 34:6077–6083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Head GA, McGrath BP, Mihailidou AS et al (2012) Ambulatory blood pressure monitoring in Australia: 2011 consensus position statement. J Hypertens 30:253–266

    Article  CAS  PubMed  Google Scholar 

  46. Sjaus A, McKeen DM, George RB (2016) Hypertensive disorders of pregnancy. Can J Anaesth 63:1075–1097

    Article  PubMed  Google Scholar 

  47. Magee LA, Pels A, Helewa M, Rey E, von Dadelszen P, Canadian Hypertensive Disorders of Pregnancy (HDP) Working Group (2014) Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy. Pregnancy Hypertens 4:105–145

    Article  PubMed  Google Scholar 

  48. Benhalima K, Lens K, Bosteels J, Chantal M (2019) The risk for glucose intolerance after gestational diabetes mellitus since the introduction of the IADPSG criteria: a systematic review and meta-analysis. J Clin Med 8:1431

    Article  PubMed  PubMed Central  Google Scholar 

  49. Goisis A, Remes H, Barclay K, Martikainen P, Myrskylä M (2017) Advanced maternal age and the risk of low birth weight and preterm delivery: a within-family analysis using finnish population registers. Am J Epidemiol 186:1219–1226

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fuchs F, Monet B, Ducruet T, Chaillet N, Audibert F (2018) Effect of maternal age on the risk of preterm birth: a large cohort study. PLoS ONE 13:e0191002

    Article  PubMed  PubMed Central  Google Scholar 

  51. Feng H, Wang L, Zhang G, Zhang Z, Guo W (2020) Oxidative stress activated by Keap-1/Nrf2 signaling pathway in pathogenesis of preeclampsia. Int J Clin Exp Pathol 13:382–392

    PubMed  PubMed Central  Google Scholar 

  52. Jung CH, Jung SH, Lee B, Rosenberg M, Reaven GM, Kim SH (2017) Relationship among age, insulin resistance, and blood pressure. J Am Soc Hypertens 11:359-365.e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Londero AP, Rossetti E, Pittini C, Cagnacci A, Driul L (2019) Maternal age and the risk of adverse pregnancy outcomes: a retrospective cohort study. BMC Pregnancy Childbirth 19:261

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kanmaz AG, İnan AH, Beyan E, Ögür S, Budak A (2019) Effect of advanced maternal age on pregnancy outcomes: a single-centre data from a tertiary healthcare hospital. J Obstet Gynaecol 39:1104–1111

    Article  PubMed  Google Scholar 

  55. Ferrazzi E, Brembilla G, Cipriani S, Livio S, Paganelli A, Parazzini F (2019) Maternal age and body mass index at term: Risk factors for requiring an induced labour for a late-term pregnancy. Eur J Obstet Gynecol Reprod Biol 233:151–157

    Article  PubMed  Google Scholar 

  56. Liu B, Xu G, Sun Y et al (2019) Association between maternal pre-pregnancy obesity and preterm birth according to maternal age and race or ethnicity: a population-based study. Lancet Diabetes Endocrinol 7:707–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Biobaku F, Ghanim H, Batra M, Dandona P (2019) Macronutrient-mediated inflammation and oxidative stress: relevance to insulin resistance, obesity, and atherogenesis. J Clin Endocrinol Metab 104:6118–6128

    Article  PubMed  Google Scholar 

  58. Lewandowska M, Więckowska B, Sajdak S, Lubiński J (2020) First trimester microelements and their relationships with pregnancy outcomes and complications. Nutrients 12:1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hajer GR, van Haeften TW, Visseren FL (2008) Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29:2959–2971

    Article  CAS  PubMed  Google Scholar 

  60. Wang YC, Liang CS, Gopal DM et al (2015) Preclinical systolic and diastolic dysfunctions in metabolically healthy and unhealthy obese individuals. Circ Heart Fail 8:897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee HJ, Kim HL, Lim WH et al (2019) Subclinical alterations in left ventricular structure and function according to obesity and metabolic health status. PLoS ONE 14:e0222118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang Y, Liang J, Zheng S et al (2021) Combined associations of obesity and metabolic health with subclinical left ventricular dysfunctions: Danyang study. ESC Heart Fail 8:3058–3069

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sonaglioni A, Nicolosi GL, Granato A, Lombardo M, Anzà C, Ambrosio G (2021) Reduced myocardial strain parameters in subjects with pectus excavatum: impaired myocardial function or methodological limitations due to chest deformity? Semin Thorac Cardiovasc Surg 33:251–262

    Article  PubMed  Google Scholar 

  64. Sonaglioni A, Nicolosi GL, Lombardo M, Gensini GF, Ambrosio G (2021) Influence of chest conformation on myocardial strain parameters in healthy subjects with mitral valve prolapse. Int J Cardiovasc Imaging 37:1009–1022

    Article  PubMed  Google Scholar 

  65. Sonaglioni A, Esposito V, Caruso C et al (2021) Chest conformation spuriously influences strain parameters of myocardial contractile function in healthy pregnant women. J Cardiovasc Med (Hagerstown) 22:767–779

    Article  CAS  PubMed  Google Scholar 

  66. Sonaglioni A, Nicolosi GL, Braga M, Villa MC, Migliori C, Lombardo M (2021) Does chest wall conformation influence myocardial strain parameters in infants with pectus excavatum? J Clin Ultrasound 49:918–928

    Article  PubMed  Google Scholar 

  67. LoMauro A, Aliverti A (2015) Respiratory physiology of pregnancy: physiology masterclass. Breathe (Sheff) 11:297–301

    Article  PubMed  Google Scholar 

  68. Holmes S, Kirkpatrick ID, Zelop CM, Jassal DS (2015) MRI evaluation of maternal cardiac displacement in pregnancy: implications for cardiopulmonary resuscitation. Am J Obstet Gynecol 213:401.e1-401.e15

    Article  PubMed  Google Scholar 

  69. Wang C, Wei Y, Zhang X et al (2017) A randomized clinical trial of exercise during pregnancy to prevent gestational diabetes mellitus and improve pregnancy outcome in overweight and obese pregnant women. Am J Obstet Gynecol 216:340–351

    Article  PubMed  Google Scholar 

  70. Carluccio E, Biagioli P, Lauciello R et al (2019) Superior prognostic value of right ventricular free wall compared to global longitudinal strain in patients with heart failure. J Am Soc Echocardiogr 32:836-844.e1

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by Italian Ministry of Health Ricerca Corrente—IRCCS MultiMedica.

Author information

Authors and Affiliations

Authors

Contributions

AS: conceptualization; data curation; investigation; methodology; software; analysis; writing—original draft. GLN: conceptualization; supervision; validation; writing—review & editing. CM: conceptualization; supervision; validation; writing—review & editing. SB: conceptualization; supervision; validation; writing—review & editing. ML: conceptualization; supervision; validation; writing—review & editing.

Corresponding author

Correspondence to Andrea Sonaglioni.

Ethics declarations

Conflict of interest

We wish to confirm that there are no conflicts of interest associated with this publication. Andrea Sonaglioni declares that he has no conflict of interest. Gian Luigi Nicolosi declares that he has no conflict of interest. Claudio Migliori declares that he has no conflict of interest. Stefano Bianchi declares that he has no conflict of interest. Michele Lombardo declares that he has no conflict of interest.

Ethical approval

All procedures performed in the present study were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonaglioni, A., Nicolosi, G.L., Migliori, C. et al. Usefulness of second trimester left ventricular global longitudinal strain for predicting adverse maternal outcome in pregnant women aged 35 years or older. Int J Cardiovasc Imaging 38, 1061–1075 (2022). https://doi.org/10.1007/s10554-021-02485-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02485-9

Keywords

Navigation