Skip to main content

Advertisement

Log in

The impact of iterative reconstruction algorithms on machine learning-based coronary CT angiography-derived fractional flow reserve (CT-FFRML) values

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To evaluate the impact of an iterative reconstruction (IR) algorithm (advanced modeled iterative reconstruction, ADMIRE) on machine learning-based coronary computed tomography angiography–derived fractional flow reserve (CT-FFRML) measurements compared with filtered back projection (FBP). 170 plaque-containing vessels in 107 patients were included. CT-FFRML values were measured and compared among 5 imaging reconstruction algorithms (FBP and ADMIRE at strength levels of 1, 2, 3 and 5). The plaques were classified as, ‘calcified” or “noncalcified” and “≥ 50% stenosis” or “< 50% stenosis’, a total of four subgroups by consensus. There were no significant differences of CT-FFRML values among the FBP and ADMIRE 1, 2, 3 and 5 groups wherever comparisons were done at the level of subgroups (P = 0.676, 0.414, 0.849, 0.873, respectively) or overall (P = 0.072). There were 20, 21, 19, 19 and 29 vessels with lesion-specific ischemia (CT-FFRML ≤ 0.80) in FBP and ADMIRE 1, 2, 3 and 5 datasets, respectively, but no statistical differences were found (P = 0.437). Compared with CT-FFRML value of FBP dataset, the CT-FFRML values of 9 (5.3%) vessels from 8 patients (7.5%) in ADMIRE5 dataset switched from above 0.8 to below or equal to 0.8. There were no significant differences of the CT-FFRML values among the FBP and IR image algorithms at different strength levels. However, high iterative strength level (ADMIRE 5) was not recommended, which might have an impact on diagnosis of lesion-specific ischemia, although changes only occurred in a modest number of subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tesche C, De Cecco CN, Caruso D, Baumann S, Renker M, Mangold S, Dyer KT, Varga-Szemes A, Baquet M, Jochheim D, Ebersberger U, Bayer RR, Hoffmann E, Steinberg DH, Schoepf UJ (2016) Coronary CT angiography derived morphological and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis. J Cardiovasc Comput Tomogr 10(3):199–206. https://doi.org/10.1016/j.jcct.2016.03.002

    Article  PubMed  Google Scholar 

  2. Chow BJ, Small G, Yam Y, Chen L, Achenbach S, Al-Mallah M, Berman DS, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Cheng V, Chinnaiyan KM, Delago A, Dunning A, Hadamitzky M, Hausleiter J, Kaufmann P, Lin F, Maffei E, Raff GL, Shaw LJ, Villines TC, Min JK (2011) Incremental prognostic value of cardiac computed tomography in coronary artery disease using CONFIRM: COroNary computed tomography angiography evaluation for clinical outcomes: an InteRnational Multicenter registry. Circ Cardiovasc Imaging 4(5):463–472. https://doi.org/10.1161/circimaging.111.964155

    Article  PubMed  Google Scholar 

  3. Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, Paul N, Clouse ME, Shapiro EP, Hoe J, Lardo AC, Bush DE, de Roos A, Cox C, Brinker J, Lima JA (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359(22):2324–2336. https://doi.org/10.1056/NEJMoa0806576

    Article  CAS  PubMed  Google Scholar 

  4. Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schoebinger M, Flohr T, Sharma P (1985) Comaniciu D (2016) A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol 121(1):42–52. https://doi.org/10.1152/japplphysiol.00752.2015

    Article  Google Scholar 

  5. Tesche C, De Cecco CN, Baumann S, Renker M, McLaurin TW, Duguay TM, Bayer RR 2nd, Steinberg DH, Grant KL, Canstein C, Schwemmer C, Schoebinger M, Itu LM, Rapaka S, Sharma P, Schoepf UJ (2018) Coronary CT angiography-derived fractional flow reserve: machine learning algorithm versus computational fluid dynamics modeling. Radiology 288(1):64–72. https://doi.org/10.1148/radiol.2018171291

    Article  PubMed  Google Scholar 

  6. Coenen A, Kim YH, Kruk M, Tesche C, De Geer J, Kurata A, Lubbers ML, Daemen J, Itu L, Rapaka S, Sharma P, Schwemmer C, Persson A, Schoepf UJ, Kepka C, Hyun Yang D, Nieman K (2018) Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve: result from the MACHINE consortium. Circ Cardiovasc Imaging 11(6):e007217. https://doi.org/10.1161/CIRCIMAGING.117.007217

    Article  PubMed  Google Scholar 

  7. Geyer LL, Schoepf UJ, Meinel FG, Nance JW, Bastarrika G, Leipsic JA, Paul NS, Rengo M, Laghi A, De Cecco CN (2015) State of the art: iterative CT reconstruction techniques. Radiology 276(2):338–356. https://doi.org/10.1148/radiol.2015132766

    Article  Google Scholar 

  8. Gordic S, Morsbach F, Schmidt B, Allmendinger T, Flohr T, Husarik D, Baumueller S, Raupach R, Stolzmann P, Leschka S, Frauenfelder T, Alkadhi H (2014) Ultralow-dose chest computed tomography for pulmonary nodule detection: first performance evaluation of single energy scanning with spectral shaping. Invest Radiol 49(7):465–473. https://doi.org/10.1097/RLI.0000000000000037

    Article  PubMed  Google Scholar 

  9. Gordic S, Desbiolles L, Stolzmann P, Gantner L, Leschka S, Husarik DB, Alkadhi H (2014) Advanced modelled iterative reconstruction for abdominal CT: qualitative and quantitative evaluation. Clin Radiol 69(12):E497–E504. https://doi.org/10.1016/j.crad.2014.08.012

    Article  CAS  PubMed  Google Scholar 

  10. Choy S, Parhar D, Lian K, Schmiedeskamp H, Louis L, O'Connell T, McLaughlin P, Nicolaou S (2019) Comparison of image noise and image quality between full-dose abdominal computed tomography scans reconstructed with weighted filtered back projection and half-dose scans reconstructed with improved sinogram-affirmed iterative reconstruction (SAFIRE*). Abdom Radiol 44(1):355–361. https://doi.org/10.1007/s00261-018-1687-9

    Article  Google Scholar 

  11. Solomon J, Wilson J, Samei E (2015) Characteristic image quality of a third generation dual-source MDCT scanner: noise, resolution, and detectability. Med Phys 42(8):4941–4953. https://doi.org/10.1118/1.4923172

    Article  PubMed  Google Scholar 

  12. Takx RA, Willemink MJ, Nathoe HM, Schilham AM, Budde RP, de Jong PA, Leiner T (2014) The effect of iterative reconstruction on quantitative computed tomography assessment of coronary plaque composition. Int J Cardiovasc Imaging 30(1):155–163. https://doi.org/10.1007/s10554-013-0293-8

    Article  PubMed  Google Scholar 

  13. Gassenmaier T, Distelmaier I, Weng AM, Bley TA, Klink T (2017) Impact of advanced modeled iterative reconstruction on interreader agreement in coronary artery measurements. Eur J Radiol 94:201–208. https://doi.org/10.1016/j.ejrad.2017.06.029

    Article  PubMed  Google Scholar 

  14. Solomon J, Mileto A, Ramirez-Giraldo JC, Samei E (2015) Diagnostic performance of an advanced modeled iterative reconstruction algorithm for low-contrast detectability with a third-generation dual-source multidetector CT scanner: potential for radiation dose reduction in a multireader study. Radiology 275(3):735–745. https://doi.org/10.1148/radiol.15142005

    Article  PubMed  Google Scholar 

  15. Schaller F, Sedlmair M, Raupach R, Uder M, Leii M (2016) Noise reduction in abdominal computed tomography applying iterative reconstruction (ADMIRE). Acad Radiol 23(10):1230–1238. https://doi.org/10.1016/j.acra.2016.05.016

    Article  PubMed  Google Scholar 

  16. Mastrodicasa D, Albrecht MH, Schoepf UJ, Varga-Szemes A, Jacobs BE, Gassenmaier S, De Santis D, Eid MH, van Assen M, Tesche C, Mantini C, De Cecco CN (2018) Artificial intelligence machine learning-based coronary CT fractional flow reserve (CT-FFRML): Impact of iterative and filtered back projection reconstruction techniques. J Cardiovasc Comput Tomogr. https://doi.org/10.1016/j.jcct.2018.10.026

    Article  PubMed  Google Scholar 

  17. Leipsic J, Abbara S, Achenbach S, Cury R, Earls JP, Mancini GJ, Nieman K, Pontone G, Raff GL (2014) SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 8(5):342–358. https://doi.org/10.1016/j.jcct.2014.07.003

    Article  PubMed  Google Scholar 

  18. Min JK, Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, Defrance T, Leipsic J (2012) Effect of image quality on diagnostic accuracy of noninvasive fractional flow reserve: results from the prospective multicenter international DISCOVER-FLOW study. J Cardiovasc Comput Tomogr 6(3):191–199. https://doi.org/10.1016/j.jcct.2012.04.010

    Article  PubMed  Google Scholar 

  19. Tonino PA, De-Bruyne B, Pijls NH, Siebert U, Ikeno F, van’t Veer M, Klauss V, Manoharan G, Engstrom T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF, Investigators FS (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224. https://doi.org/10.1056/NEJMoa0807611

    Article  CAS  PubMed  Google Scholar 

  20. Dey D, Gaur S, Ovrehus KA, Slomka PJ, Betancur J, Goeller M, Hell MM, Gransar H, Berman DS, Achenbach S, Botker HE, Jensen JM, Lassen JF, Norgaard BL (2018) Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study. Eur Radiol 28(6):2655–2664. https://doi.org/10.1007/s00330-017-5223-z

    Article  PubMed  PubMed Central  Google Scholar 

  21. Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, Andreini D, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Chinnaiyan K, Chow BJ, Cury RC, Delago A, Gomez M, Gransar H, Hadamitzky M, Hausleiter J, Hindoyan N, Feuchtner G, Kaufmann PA, Kim YJ, Leipsic J, Lin FY, Maffei E, Marques H, Pontone G, Raff G, Rubinshtein R, Shaw LJ, Stehli J, Villines TC, Dunning A, Min JK, Slomka PJ (2017) Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J 38(7):500–507. https://doi.org/10.1093/eurheartj/ehw188

    Article  PubMed  Google Scholar 

  22. Renker M, Nance JW Jr, Schoepf UJ, O'Brien TX, Zwerner PL, Meyer M, Kerl JM, Bauer RW, Fink C, Vogl TJ, Henzler T (2011) Evaluation of heavily calcified vessels with coronary CT angiography: comparison of iterative and filtered back projection image reconstruction. Radiology 260(2):390–399. https://doi.org/10.1148/radiol.11103574

    Article  PubMed  Google Scholar 

  23. Chen B, Ramirez Giraldo JC, Solomon J, Samei E (2014) Evaluating iterative reconstruction performance in computed tomography. Med Phys 41(12):121913. https://doi.org/10.1118/1.4901670

    Article  PubMed  Google Scholar 

  24. Benz DC, Fuchs TA, Grani C, Studer Bruengger AA, Clerc OF, Mikulicic F, Messerli M, Stehli J, Possner M, Pazhenkottil AP, Gaemperli O, Kaufmann PA, Buechel RR (2018) Head-to-head comparison of adaptive statistical and model-based iterative reconstruction algorithms for submillisievert coronary CT angiography. Eur Heart J Cardiovasc Imaging 19(2):193–198. https://doi.org/10.1093/ehjci/jex008

    Article  PubMed  Google Scholar 

  25. Puchner SB, Ferencik M, Maurovich-Horvat P, Nakano M, Otsuka F, Kauczor H-U, Virmani R, Hoffmann U, Schlett CL (2014) Iterative image reconstruction algorithms in coronary CT angiography improve the detection of lipid-core plaque—a comparison with histology. Eur Radiol 25(1):15–23. https://doi.org/10.1007/s00330-014-3404-6

    Article  PubMed  Google Scholar 

  26. Wang R, Schoepf UJ, Wu RZ, Nance JW, Lv BA, Yang H, Li F, Lu DX, Zhang ZQ (2014) Diagnostic accuracy of coronary CT angiography: comparison of filtered back projection and iterative reconstruction with different strengths. J Comput Assist Tomogr 38(2):179–184. https://doi.org/10.1097/Rct.0000000000000005

    Article  PubMed  Google Scholar 

  27. Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek JKJJ, Koolen JJ (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334(26):1703–1708. https://doi.org/10.1056/NEJM199606273342604

    Article  CAS  PubMed  Google Scholar 

  28. Sand NPR, Veien KT, Nielsen SS, Norgaard BL, Larsen P, Johansen A, Hess S, Deibjerg L, Husain M, Junker A, Thomsen KK, Rohold A, Jensen LO (2018) Prospective comparison of FFR derived from coronary CT angiography with SPECT perfusion imaging in stable coronary artery disease. The ReASSESS study. JACC Cardiovasc Imaging 11(11):1640–1650. https://doi.org/10.1016/j.jcmg.2018.05.004

    Article  PubMed  Google Scholar 

  29. Coenen A, Lubbers MM, Kurata A, Kono A, Dedic A, Chelu RG, Dijkshoorn ML, Gijsen FJ, Ouhlous M, van Geuns RJM, Nieman K (2015) Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm. Radiology 274(3):674–683. https://doi.org/10.1148/radiol.14140992

    Article  PubMed  Google Scholar 

  30. Rother J, Moshage M, Dey D, Schwemmer C, Trobs M, Blachutzik F, Achenbach S, Schlundt C, Marwan M (2018) Comparison of invasively measured FFR with FFR derived from coronary CT angiography for detection of lesion-specific ischemia: results from a PC-based prototype algorithm. J Cardiovasc Comput Tomogr 12(2):101–107. https://doi.org/10.1016/j.jcct.2018.01.012

    Article  PubMed  Google Scholar 

  31. Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Dunning AM, Apruzzese P, Budoff MJ, Cole JH, Jaffer FA, Leon MB, Malpeso J, Mancini GBJ, Park SJ, Schwartz RS, Shaw LJ, Mauri L (2012) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA J Am Med Assoc 308(12):1237–1245. https://doi.org/10.1001/2012.jama.11274

    Article  CAS  Google Scholar 

  32. Norgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM, Mauri L, De Bruyne B, Bezerra H, Osawa K, Marwan M, Naber C, Erglis A, Park SJ, Christiansen EH, Kaltoft A, Lassen JF, Botker HE, Achenbach S, Grp NTS (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: next steps). J Am Coll Cardiol 63(12):1145–1155. https://doi.org/10.1016/j.jacc.2013.11.043

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thank American Journal Experts for providing language help.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [SL], [CC], [LQ] and [SG]. Conceptualization, resources, and methodology were performed by [WY], [HZ].and [FY]. The first draft of the manuscript was written by [SL]. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wenjie Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The approval for this study had been granted by the local Institutional Review Board prior to its conduct and informed consent was waived. The study therefore had been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. No patient identifiers were collected, and details that might disclose the identity of the subjects under study should were omitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Chen, C., Qin, L. et al. The impact of iterative reconstruction algorithms on machine learning-based coronary CT angiography-derived fractional flow reserve (CT-FFRML) values. Int J Cardiovasc Imaging 36, 1177–1185 (2020). https://doi.org/10.1007/s10554-020-01807-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-01807-7

Keywords

Navigation