Skip to main content
Log in

High-resolution MRI assessed carotid atherosclerotic plaque characteristics comparing men and women with elevated ApoB levels

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Previous studies demonstrated that men were more likely to have plaque rupture and are at greater risk for myocardial infarction and stroke than women. We evaluated differences in carotid plaque characteristics by MRI between men and women with mild-moderate atherosclerosis and elevated ApoB levels. One hundred eighty-two subjects (104 men and 78 women) with CAD or carotid stenosis (≥ 15% by ultrasound), ApoB ≥ 120 mg/dL and carotid MRI scan were included. Percent wall volume (%WV) was calculated as (wall volume/total vessel volume) × 100%. Three major plaque compositions, fibrous tissue (FT), calcification (CA) and lipid rich necrotic core (LRNC), were identified and quantified using published MRI criteria. Adventitial and plaque neovascularization as fractional plasma volume (Vp) and permeability as transfer constant (Ktrans) were analyzed using kinetic modeling. These characteristics were compared between men and women. Men, compared to women, were younger (54 ± 8 vs. 58 ± 8 years, p = 0.01), had higher rate of previous MI (46 vs. 26%, p = 0.005) but lower proportions of metabolic syndrome (37 vs. 59%, p = 0.003). After adjusting for between-gender differences, men were significantly more likely to have LRNC (OR 2.22, 95% CI 1.04–4.89, p = 0.04) and showed significantly larger %LRNC than women (diff = 4.3%, 95% CI 1.6–6.9%, p = 0.002), while %WV, FT, and CA were similar between men and women. There were no statistically significant differences in adventitial and plaque Vp or Ktrans. Men were significantly more likely to have LRNC and had larger LRNC than women. However, men and women showed relatively similar levels of adventitial and plaque neovascularization and permeability.

Trial registration: NCT00715273 at ClinicalTrials.gov. Registered 15 July 2008, retrospectively registered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ASCVD:

Atherosclerotic cardiovascular disease

MI:

Myocardial infarction

MRI:

Magnetic resonance imaging

DCE-MRI:

Dynamic contrast-enhanced MRI

%WV:

Percent wall volume

FT:

Fibrous tissue

CA:

Calcification

LRNC:

Lipid rich necrotic core

V p :

Fractional plasma volume

K trans :

Transfer constant

OCT:

Optical coherence tomography

References

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jimenez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER III, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133:e38–e360

    PubMed  Google Scholar 

  2. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, de Ferranti SD, Ferguson JF, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Lutsey PL, Mackey JS, Matchar DB, Matsushita K, Mussolino ME, Nasir K, O’Flaherty M, Palaniappan LP, Pandey A, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UKA, Satou GM, Shah SH, Spartano NL, Tirschwell DL, Tsao CW, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 137:e67–e492

    Article  PubMed  Google Scholar 

  3. Mann JM, Davies MJ (1996) Vulnerable plaque. Relation of characteristics to degree of stenosis in human coronary arteries. Circulation 94:928–931

    Article  CAS  PubMed  Google Scholar 

  4. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143

    Article  CAS  PubMed  Google Scholar 

  5. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  6. Takaya N, Yuan C, Chu B, Saam T, Underhill H, Cai J, Tran N, Polissar NL, Isaac C, Ferguson MS, Garden GA, Cramer SC, Maravilla KR, Hashimoto B, Hatsukami TS (2006) Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI–initial results. Stroke 37:818–823

    Article  PubMed  Google Scholar 

  7. Mono ML, Karameshev A, Slotboom J, Remonda L, Galimanis A, Jung S, Findling O, De Marchis GM, Luedi R, Kiefer C, Stuker C, Mattle HP, Schroth G, Arnold M, Nedeltchev K, El-Koussy M (2012) Plaque characteristics of asymptomatic carotid stenosis and risk of stroke. Cerebrovasc Dis (Basel, Switzerland) 34:343–350

    Article  Google Scholar 

  8. Hosseini AA, Kandiyil N, Macsweeney ST, Altaf N, Auer DP (2013) Carotid plaque hemorrhage on magnetic resonance imaging strongly predicts recurrent ischemia and stroke. Ann Neurol 73:774–784

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gupta A, Baradaran H, Schweitzer AD, Kamel H, Pandya A, Delgado D, Dunning A, Mushlin AI, Sanelli PC (2013) Carotid plaque MRI and stroke risk: a systematic review and meta-analysis. Stroke 44:3071–3077

    Article  PubMed  Google Scholar 

  10. Hellings WE, Peeters W, Moll FL, Piers SR, van Setten J, Van der Spek PJ, de Vries JP, Seldenrijk KA, De Bruin PC, Vink A, Velema E, de Kleijn DP, Pasterkamp G (2010) Composition of carotid atherosclerotic plaque is associated with cardiovascular outcome: a prognostic study. Circulation 121:1941–1950

    Article  PubMed  Google Scholar 

  11. Sun J, Zhao XQ, Balu N, Neradilek MB, Isquith DA, Yamada K, Canton G, Crouse JR 3rd, Anderson TJ, Huston J 3rd, O’Brien K, Hippe DS, Polissar NL, Yuan C, Hatsukami TS (2017) Carotid plaque lipid content and fibrous cap status predict systemic CV outcomes: the MRI substudy in AIM-HIGH. JACC Cardiovasc Imaging 10:241–249

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sun J, Song Y, Chen H, Kerwin WS, Hippe DS, Dong L, Chen M, Zhou C, Hatsukami TS, Yuan C (2013) Adventitial perfusion and intraplaque hemorrhage: a dynamic contrast-enhanced MRI study in the carotid artery. Stroke 44:1031–1036

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sun J, Underhill HR, Hippe DS, Xue Y, Yuan C, Hatsukami TS (2012) Sustained acceleration in carotid atherosclerotic plaque progression with intraplaque hemorrhage: a long-term time course study. JACC Cardiovasc Imaging 5:798–804

    Article  PubMed  PubMed Central  Google Scholar 

  14. Simpson RJ, Akwei S, Hosseini AA, MacSweeney ST, Auer DP, Altaf N (2015) MR imaging-detected carotid plaque hemorrhage is stable for 2 years and a marker for stenosis progression. AJNR Am J Neuroradiol 36:1171–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Underhill HR, Yuan C, Yarnykh VL, Chu B, Oikawa M, Dong L, Polissar NL, Garden GA, Cramer SC, Hatsukami TS (2010) Predictors of surface disruption with MR imaging in asymptomatic carotid artery stenosis. AJNR Am J Neuroradiol 31:487–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Altaf N, Goode SD, Beech A, Gladman JR, Morgan PS, MacSweeney ST, Auer DP (2011) Plaque hemorrhage is a marker of thromboembolic activity in patients with symptomatic carotid disease. Radiology 258:538–545

    Article  PubMed  Google Scholar 

  17. van Dijk AC, Truijman MT, Hussain B, Zadi T, Saiedie G, de Rotte AA, Liem MI, van der Steen AF, Daemen MJ, Koudstaal PJ, Nederkoorn PJ, Hendrikse J, Kooi ME, van der Lugt A (2015) Intraplaque hemorrhage and the plaque surface in carotid atherosclerosis: the plaque at RISK study (PARISK). AJNR Am J Neuroradiol 36:2127–2133

    Article  PubMed  PubMed Central  Google Scholar 

  18. Saam T, Hetterich H, Hoffmann V, Yuan C, Dichgans M, Poppert H, Koeppel T, Hoffmann U, Reiser MF, Bamberg F (2013) Meta-analysis and systematic review of the predictive value of carotid plaque hemorrhage on cerebrovascular events by magnetic resonance imaging. J Am Coll Cardiol 62:1081–1091

    Article  PubMed  Google Scholar 

  19. Wang J, Chen H, Sun J, Hippe DS, Zhang H, Yu S, Cai J, Xie L, Cui B, Yuan C, Zhao X, Yuan W, Liu H (2017) Dynamic contrast-enhanced MR imaging of carotid vasa vasorum in relation to coronary and cerebrovascular events. Atherosclerosis 263:420–426

    Article  CAS  PubMed  Google Scholar 

  20. Albreksten G (2016) Lifelong gender gap in risk of incident myocardial infarction. The Tromso study. JAMA 176(11):1673–1679

    Google Scholar 

  21. Appelors P (2009) Sex differences in stroke epidemiology: a systematic review. Stroke 40(4):1082–1090

    Article  Google Scholar 

  22. Otsuka F, Kramer MC, Woudstra P, Yahagi K, Ladich E, Finn AV, de Winter RJ, Kolodgie FD, Wight TN, Davis HR, Joner M, Virmani R (2015) Natural progression of atherosclerosis from pathologic intimal thickening to late fibroatheroma in human coronary arteries: a pathology study. Atherosclerosis 241:772–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dai J, Xing L, Jia H, Zhu Y, Zhang S, Hu S, Lin L, Ma L, Liu H, Xu M, Ren X, Yu H, Li L, Zou Y, Zhang S, Mintz GS, Hou J, Yu B (2018) In vivo predictors of plaque erosion in patients with ST-segment elevation myocardial infarction: a clinical, angiographical, and intravascular optical coherence tomography study. Eur Heart J 39:2077–2085

    Article  PubMed  Google Scholar 

  24. Lansky AJ, Ng VG, Maehara A, Weisz G, Lerman A, Mintz GS, De Bruyne B, Farhat N, Niess G, Jankovic I, Lazar D, Xu K, Fahy M, Serruys PW, Stone GW (2012) Gender and the extent of coronary atherosclerosis, plaque composition, and clinical outcomes in acute coronary syndromes. JACC Cardiovasc Imaging 5:S62–S72

    Article  PubMed  Google Scholar 

  25. Ong DS, Lee JS, Soeda T, Higuma T, Minami Y, Wang Z, Lee H, Yokoyama H, Yokota T, Okumura K, Jang IK (2016) Coronary calcification and plaque vulnerability: an optical coherence tomographic study. Circ Cardiovasc Imaging 9:e003929

    Article  PubMed  Google Scholar 

  26. Ota H, Reeves MJ, Zhu DC, Majid A, Collar A, Yuan C, DeMarco JK (2010) Sex differences in patients with asymptomatic carotid atherosclerotic plaque: in vivo 3.0-T magnetic resonance study. Stroke 41:1630–1635

    Article  PubMed  Google Scholar 

  27. Zhao XQ, Phan BA, Chu B, Bray F, Moore AB, Polissar NL, Dodge JT Jr, Lee CD, Hatsukami TS, Yuan C (2007) Testing the hypothesis of atherosclerotic plaque lipid depletion during lipid therapy by magnetic resonance imaging: study design of carotid plaque composition study. Am Heart J 154:239–246

    Article  CAS  PubMed  Google Scholar 

  28. Zhao XQ, Dong L, Hatsukami T, Phan BA, Chu B, Moore A, Lane T, Neradilek MB, Polissar N, Monick D, Lee C, Underhill H, Yuan C (2011) MR imaging of carotid plaque composition during lipid-lowering therapy a prospective assessment of effect and time course. JACC Cardiovasc Imaging 4:977–986

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sun J, Zhao XQ, Balu N, Hippe DS, Hatsukami TS, Isquith DA, Yamada K, Neradilek MB, Canton G, Xue Y, Fleg JL, Desvigne-Nickens P, Klimas MT, Padley RJ, Vassileva MT, Wyman BT, Yuan C (2015) Carotid magnetic resonance imaging for monitoring atherosclerotic plaque progression: a multicenter reproducibility study. Int J Cardiovasc Imaging 31:95–103

    Article  PubMed  Google Scholar 

  30. Jahnke C, Dietrich T, Paetsch I, Koehler U, Preetz K, Schnackenburg B, Fleck E, Graf K, Nagel E (2007) Experimental evaluation of the detectability of submillimeter atherosclerotic lesions in ex vivo human iliac arteries with ultrahigh-field (7.0 T) magnetic resonance imaging. Int J Cardiovasc Imaging 23:519–527

    Article  PubMed  Google Scholar 

  31. Saam T, Cai JM, Cai YQ, An NY, Kampschulte A, Xu D, Kerwin WS, Takaya N, Polissar NL, Hatsukami TS, Yuan C (2005) Carotid plaque composition differs between ethno-racial groups: an MRI pilot study comparing mainland Chinese and American Caucasian patients. Arterioscler Thromb Vasc Biol 25:611–616

    Article  CAS  PubMed  Google Scholar 

  32. Kerwin W, Hooker A, Spilker M, Vicini P, Ferguson M, Hatsukami T, Yuan C (2003) Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation 107:851–856

    Article  PubMed  Google Scholar 

  33. Kerwin WS, Oikawa M, Yuan C, Jarvik GP, Hatsukami TS (2008) MR imaging of adventitial vasa vasorum in carotid atherosclerosis. Magn Reson Med 59:507–514

    Article  CAS  PubMed  Google Scholar 

  34. Richardson PD, Davies MJ, Born GV (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet (London, England) 2:941–944

    Article  CAS  Google Scholar 

  35. Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J (1993) Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 69:377–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lendon CL, Davies MJ, Born GV, Richardson PD (1991) Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 87:87–90

    Article  CAS  PubMed  Google Scholar 

  37. Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Investig 94:2493–2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Galis ZS, Sukhova GK, Kranzhofer R, Clark S, Libby P (1995) Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci USA 92:402–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nikkari ST, O’Brien KD, Ferguson M, Hatsukami T, Welgus HG, Alpers CE, Clowes AW (1995) Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis. Circulation 92:1393–1398

    Article  CAS  PubMed  Google Scholar 

  40. van der Wal AC, Becker AE, van der Loos CM, Das PK (1994) Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89:36–44

    Article  PubMed  Google Scholar 

  41. Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT (1994) Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 90:775–778

    Article  CAS  PubMed  Google Scholar 

  42. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275

    Article  CAS  PubMed  Google Scholar 

  43. Kataoka Y, Puri R, Hammadah M, Duggal B, Uno K, Kapadia SR, Tuzcu EM, Nissen SE, King P, Nicholls SJ (2016) Sex differences in nonculprit coronary plaque microstructures on frequency-domain optical coherence tomography in acute coronary syndromes and stable coronary artery disease. Circ Cardiovasc Imaging 9:e004506

    Article  PubMed  Google Scholar 

  44. Kubo T, Imanishi T, Takarada S, Kuroi A, Ueno S, Yamano T, Tanimoto T, Matsuo Y, Masho T, Kitabata H, Tsuda K, Tomobuchi Y, Akasaka T (2007) Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol 50:933–939

    Article  PubMed  Google Scholar 

  45. Barger AC, Beeuwkes R III, Lainey LL, Silverman KJ (1984) Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 310:175–177

    Article  CAS  PubMed  Google Scholar 

  46. Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, Farb A, Guerrero LJ, Hayase M, Kutys R, Narula J, Finn AV, Virmani R (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349:2316–2325

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by an NIH Grant No. (R01 HL63895) from the National Heart, Lung, and Blood Institute, Bethesda, MD, and Alpha Phi Foundation, Evanston, IL.

Author information

Authors and Affiliations

Authors

Contributions

TH, PP and JH wrote the manuscript. DI and HB performed data collection. DX was responsible for MR image review. MN performed statistical analysis and attributed to data interpretation. EG was involved in DCE-MRI data analysis. XZ was responsible for overall study design, funding and interpretation of the study results. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xue-Qiao Zhao.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, T., Paramsothy, P., Hong, J. et al. High-resolution MRI assessed carotid atherosclerotic plaque characteristics comparing men and women with elevated ApoB levels. Int J Cardiovasc Imaging 36, 481–489 (2020). https://doi.org/10.1007/s10554-019-01600-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-019-01600-1

Keywords

Navigation