Skip to main content

Advertisement

Log in

Increased fractal dimension of left ventricular trabeculations is associated with subclinical diastolic dysfunction in patients with type-2 diabetes mellitus

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the relationship among left ventricular (LV) concentric hypertrophy, endocardial remodeling, and myocardial deformation in type-2 diabetes mellitus (T2DM). Fifty-three T2DM patients with normotension and 36 healthy controls underwent cardiovascular magnetic resonance imaging to assess for LV concentric hypertrophy (LV myocardial mass index, LVMMi; LVMMi-to-LV end-diastolic volume index ratio, MVR), endocardial remodeling (fractal dimension of trabeculations, FD), and myocardial deformation (global longitudinal, radial and circumferential strain, systolic and diastolic strain rate). When compared with healthy controls, T2DM was associated with LV concentric hypertrophy (LVMMi: T2DM, 52.7 ± 8.9 g/m2; controls, 48.7 ± 8.4 g/m2, p = 0.032; MVR: T2DM, 0.88 ± 0.19 g/mL; controls, 0.77 ± 0.16 g/mL, p = 0.007), endocardial remodeling (max. apical FD: T2DM, 1.265 ± 0.056; controls, 1.233 ± 0.055, p = 0.008; mean apical FD: T2DM, 1.198 ± 0.043; controls, 1.176 ± 0.043, p = 0.020), and subtle diastolic dysfunction (peak longitudinal diastolic strain rate, PDSRL: T2DM, 1.1 ± 0.2/s; controls, 1.2 ± 0.3/s, p = 0.031). In the stepwise multivariable regression model, the MVR was an independent determinant of the maximum apical FD (standardized β, sβ = 0.525, p < 0.001) and mean apical FD (sβ = 0.568, p < 0.001). The mean apical FD was an independent determinant of the PDSRL (p = 0.004). LV concentric hypertrophy is an independent determinant of endocardial remodeling, a process that may contribute to subtle LV diastolic dysfunction in T2DM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241(19):2035–2038

    Article  CAS  PubMed  Google Scholar 

  2. Seferovic PM, Paulus WJ (2015) Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J 36(27):1718–1727

    Article  PubMed  Google Scholar 

  3. Seferovic PM, Petrie MC, Filippatos GS, Anker SD, Rosano G, Bauersachs J, Paulus WJ, Komajda M, Cosentino F, de Boer RA, Farmakis D, Doehner W, Lambrinou E, Lopatin Y, Piepoli MF, Theodorakis MJ, Wiggers H, Lekakis J, Mebazaa A, Mamas MA, Tschope C, Hoes AW, Seferovic JP, Logue J, McDonagh T, Riley JP, Milinkovic I, Polovina M, van Veldhuisen DJ, Lainscak M, Maggioni AP, Ruschitzka F, McMurray JJV (2018) Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. https://doi.org/10.1002/ejhf.1170

    Article  PubMed  Google Scholar 

  4. Gjesdal O, Bluemke DA, Lima JA (2011) Cardiac remodeling at the population level–risk factors, screening, and outcomes. Nat Rev Cardiol 8(12):673–685. https://doi.org/10.1038/nrcardio.2011.154

    Article  PubMed  Google Scholar 

  5. Bluemke DA, Kronmal RA, Lima JA, Liu K, Olson J, Burke GL, Folsom AR (2008) The relationship of left ventricular mass and geometry to incident cardiovascular events: the MESA (multi-ethnic study of atherosclerosis) study. J Am Coll Cardiol 52(25):2148–2155. https://doi.org/10.1016/j.jacc.2008.09.014

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dweck MR, Joshi S, Murigu T, Gulati A, Alpendurada F, Jabbour A, Maceira A, Roussin I, Northridge DB, Kilner PJ, Cook SA, Boon NA, Pepper J, Mohiaddin RH, Newby DE, Pennell DJ, Prasad SK (2012) Left ventricular remodeling and hypertrophy in patients with aortic stenosis: insights from cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:50. https://doi.org/10.1186/1532-429x-14-50

    Article  PubMed  PubMed Central  Google Scholar 

  7. Captur G, Karperien AL, Hughes AD, Francis DP, Moon JC (2017) The fractal heart—embracing mathematics in the cardiology clinic. Nat Rev Cardiol 14(1):56–64. https://doi.org/10.1038/nrcardio.2016.161

    Article  PubMed  Google Scholar 

  8. Captur G, Zemrak F, Muthurangu V, Petersen SE, Li C, Bassett P, Kawel-Boehm N, McKenna WJ, Elliott PM, Lima JA, Bluemke DA, Moon JC (2015) Fractal analysis of myocardial trabeculations in 2547 study participants: multi-ethnic study of atherosclerosis. Radiology 277(3):707–715. https://doi.org/10.1148/radiol.2015142948

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cai J, Bryant JA, Le TT, Su B, de Marvao A, O’Regan DP, Cook SA, Chin CW (2017) Fractal analysis of left ventricular trabeculations is associated with impaired myocardial deformation in healthy Chinese. J Cardiovasc Magn Reson 19(1):102. https://doi.org/10.1186/s12968-017-0413-z

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huckstep OJ, Williamson W, Telles F, Burchert H, Bertagnolli M, Herdman C, Arnold L, Smillie R, Mohamed A, Boardman H, McCormick K, Neubauer S, Leeson P, Lewandowski AJ (2018) Physiological stress elicits impaired left ventricular function in preterm-born adults. J Am Coll Cardiol 71(12):1347–1356. https://doi.org/10.1016/j.jacc.2018.01.046

    Article  PubMed  PubMed Central  Google Scholar 

  11. Eitel I, Stiermaier T, Lange T, Rommel KP, Koschalka A, Kowallick JT, Lotz J, Kutty S, Gutberlet M, Hasenfuss G, Thiele H, Schuster A (2018) Cardiac magnetic resonance myocardial feature tracking for optimized prediction of cardiovascular events following myocardial infarction. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2017.11.034

    Article  PubMed  Google Scholar 

  12. Levelt E, Mahmod M, Piechnik SK, Ariga R, Francis JM, Rodgers CT, Clarke WT, Sabharwal N, Schneider JE, Karamitsos TD, Clarke K, Rider OJ, Neubauer S (2016) Relationship between left ventricular structural and metabolic remodeling in type 2 diabetes. Diabetes 65(1):44–52. https://doi.org/10.2337/db15-0627

    Article  CAS  PubMed  Google Scholar 

  13. Cao Y, Zeng W, Cui Y, Kong X, Wang M, Yu J, Zhang S, Song J, Yan X, Greiser A, Shi H (2018) Increased myocardial extracellular volume assessed by cardiovascular magnetic resonance T1 mapping and its determinants in type 2 diabetes mellitus patients with normal myocardial systolic strain. Cardiovasc Diabetol 17(1):7. https://doi.org/10.1186/s12933-017-0651-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diab Med 15(7):539–553. https://doi.org/10.1002/(SICI)1096-9136(199807)15:7%3C539::AID-DIA668%3E3.0.CO;2-S

    Article  CAS  Google Scholar 

  15. Kozor R, Nordin S, Treibel TA, Rosmini S, Castelletti S, Fontana M, Captur G, Baig S, Steeds RP, Hughes D, Manisty C, Grieve SM, Figtree GA, Moon JC (2017) Insight into hypertrophied hearts: a cardiovascular magnetic resonance study of papillary muscle mass and T1 mapping. Eur Heart J Cardiovasc Imaging 18(9):1034–1040. https://doi.org/10.1093/ehjci/jew187

    Article  PubMed  Google Scholar 

  16. Kozor R, Callaghan F, Tchan M, Hamilton-Craig C, Figtree GA, Grieve SM (2015) A disproportionate contribution of papillary muscles and trabeculations to total left ventricular mass makes choice of cardiovascular magnetic resonance analysis technique critical in Fabry disease. J Cardiovasc Magn Reson 17:22. https://doi.org/10.1186/s12968-015-0114-4

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wong TC, Piehler KM, Kang IA, Kadakkal A, Kellman P, Schwartzman DS, Mulukutla SR, Simon MA, Shroff SG, Kuller LH, Schelbert EB (2014) Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J 35(10):657–664. https://doi.org/10.1093/eurheartj/eht193

    Article  CAS  PubMed  Google Scholar 

  18. Captur G, Radenkovic D, Li C, Liu Y, Aung N, Zemrak F, Tobon-Gomez C, Gao X, Elliott PM, Petersen SE, Bluemke DA, Friedrich MG, Moon JC (2017) Community delivery of semiautomated fractal analysis tool in cardiac mr for trabecular phenotyping. J Magn Reson Imaging 46(4):1082–1088. https://doi.org/10.1002/jmri.25644

    Article  PubMed  Google Scholar 

  19. Captur G, Muthurangu V, Cook C, Flett AS, Wilson R, Barison A, Sado DM, Anderson S, McKenna WJ, Mohun TJ, Elliott PM, Moon JC (2013) Quantification of left ventricular trabeculae using fractal analysis. J Cardiovasc Magn Reson 15:36. https://doi.org/10.1186/1532-429X-15-36

    Article  PubMed  PubMed Central  Google Scholar 

  20. Captur G, Lopes LR, Patel V, Li C, Bassett P, Syrris P, Sado DM, Maestrini V, Mohun TJ, McKenna WJ, Muthurangu V, Elliott PM, Moon JC (2014) Abnormal cardiac formation in hypertrophic cardiomyopathy: fractal analysis of trabeculae and preclinical gene expression. Circ Cardiovasc Genet 7(3):241–248. https://doi.org/10.1161/circgenetics.113.000362

    Article  CAS  PubMed  Google Scholar 

  21. Velagaleti RS, Gona P, Chuang ML, Salton CJ, Fox CS, Blease SJ, Yeon SB, Manning WJ, O’Donnell CJ (2010) Relations of insulin resistance and glycemic abnormalities to cardiovascular magnetic resonance measures of cardiac structure and function: the Framingham Heart Study. Circulation 3(3):257–263. https://doi.org/10.1161/circimaging.109.911438

    Article  PubMed  Google Scholar 

  22. Heckbert SR, Post W, Pearson GD, Arnett DK, Gomes AS, Jerosch-Herold M, Hundley WG, Lima JA, Bluemke DA (2006) Traditional cardiovascular risk factors in relation to left ventricular mass, volume, and systolic function by cardiac magnetic resonance imaging: the Multiethnic Study of Atherosclerosis. J Am Coll Cardiol 48(11):2285–2292. https://doi.org/10.1016/j.jacc.2006.03.072

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH (2000) Developmental patterning of the myocardium. Anat Rec 258(4):319–337

    Article  CAS  PubMed  Google Scholar 

  24. Kawel-Boehm N, McClelland RL, Zemrak F, Captur G, Hundley WG, Liu CY, Moon JC, Petersen SE, Ambale-Venkatesh B, Lima JAC, Bluemke DA (2017) Hypertrabeculated left ventricular myocardium in relationship to myocardial function and fibrosis: the multi-ethnic study of atherosclerosis. Radiology 284(3):667–675. https://doi.org/10.1148/radiol.2017161995

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hung CL, Verma A, Uno H, Shin SH, Bourgoun M, Hassanein AH, McMurray JJ, Velazquez EJ, Kober L, Pfeffer MA, Solomon SD (2010) Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction. J Am Coll Cardiol 56(22):1812–1822. https://doi.org/10.1016/j.jacc.2010.06.044

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant Numbers 81471647 and 81571748) and the National Key Research and Development Plan of China (Grant Number 2016YFC0107100) and SWH2016JSTSYB-18.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaochun Zhang, Ziwen Liang or Jian Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The Institutional Review Board (IRB) of our hospital approved this study, the reference number was 2016-Scientific-Research-No. 50, and all subjects gave informed consent. This study has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Y., Zhang, X., Leng, W. et al. Increased fractal dimension of left ventricular trabeculations is associated with subclinical diastolic dysfunction in patients with type-2 diabetes mellitus. Int J Cardiovasc Imaging 35, 665–673 (2019). https://doi.org/10.1007/s10554-018-1492-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-018-1492-0

Keywords

Navigation