Skip to main content
Log in

Characterizing the spectrum of right ventricular remodelling in response to chronic training

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The significance and spectrum of reduced right ventricular (RV) deformation, reported in endurance athletes, is unclear. To comprehensively analyze the cardiac performance at rest of athletes, especially focusing on integrating RV size and deformation to unravel the underlying triggers of this ventricular remodelling. Hundred professional male athletes and 50 sedentary healthy males of similar age were prospectively studied. Conventional echocardiographic parameters of all four chambers were obtained, as well as 2D echo-derived strain (2DSE) in the left (LV) and in the RV free wall with separate additional analysis of the RV basal and apical segments. Left and right-sided dimensions were larger in athletes than in controls, but with a disproportionate RA enlargement. RV global strain was lower in sportsmen (−26.8 ± 2.8% vs −28.5 ± 3.4%, p < 0.001) due to a decrease in the basal segment (−22.8 ± 3.5% vs −25.8 ± 4.0%, p < 0.001) resulting in a marked gradient of deformation from the RV inlet towards the apex. By integrating size, deformation and stroke volume, we observed that the LV working conditions were similar in all sportsmen while a wider variability existed in the RV. Cardiac remodelling in athletes is more pronounced in the right heart cavities with specific regional differences within the right ventricle, but with a wide variability among individuals. The large inter-individual differences, as well as its acute and chronic relevance warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Caselli S, Di Paolo F, Psicchio C et al (2011) Three-dimensional echocardiographic characterization of the left ventricular remodelling in olympic athletes. Am J Cardiol 108:141–147

    Article  PubMed  Google Scholar 

  2. Gilbert CA, Nutter DO, Felner JM, Perkins JV, Heymsfield SB, Schlant RC (1977) Echocardiographic study of cardiac dimensions and function in the endurance-trained athlete. Am J Cardiol 40:528–533

    Article  CAS  PubMed  Google Scholar 

  3. Pluim BM, Zwinderman AH, Van der Laarse A, Van der Wall EE (2000) The athlete’s heart: a meta-analysis of cardiac structure and function. Circulation 101:336–344

    Article  CAS  PubMed  Google Scholar 

  4. Benito B, Gay-Jordi G, Serrano-Mollar A et al (2011) Cardiac arrhythmogenic remodelling in a rat model of long-term intensive exercise training. Circulation 123:13–22

    Article  PubMed  Google Scholar 

  5. Ector J, Ganame J, van der Merwe N et al (2007) Reduced right ventricular ejection fraction in endurance athletes presenting with ventricular arrhytmias: a quantitative angiographic assessment. Eur Heart J 28:345–353

    Article  PubMed  Google Scholar 

  6. Heidbüchel H, Hoogsteen J, Fagard R et al (2003) High prevalence of right ventricular involvement in endurance athletes with ventricular arrhythmias: role of an electrophysiologic study in risk stratification. Eur Heart J 24:1473–1480

    Article  PubMed  Google Scholar 

  7. La Gerche A, Burns AT, Mooney DJ et al (2012) Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J 33:998–1006

    Article  CAS  PubMed  Google Scholar 

  8. Bijnens B, Cikes M, Claus P, Sutherland G (2009) Velocity and deformation imaging for the assessment of myocardial dysfunction. Eur J Echocardiography 10:216–226

    Article  Google Scholar 

  9. Gabrielli L, Bijnens B, Butakoff C et al (2014) Atrial functional and geometrical remodelling in highly trained male athletes: for better or worse? Eur J Appl Physiol 114:1143–1152

    Article  PubMed  Google Scholar 

  10. Rösner A, Bijnens B, Hansen M et al (2009) Left ventricular size determines tissue Doppler-derived longitudinal strain and strain rate. Eur J Echocardiogr 10:271–277

    Article  PubMed  Google Scholar 

  11. Mitchell JH, Haskell W, Snell P, Van Camp SP (2005) Task force 8: classification of sports. J Am Coll Cardiol 45:1364–1367

    Article  PubMed  Google Scholar 

  12. Lang RM, Bierig M, Devereux RB et al (2005) Recommendations for chamber quantification a report from the American Society of Echocardiography’s: guidelines and standards committee and the chamber quantification a writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  PubMed  Google Scholar 

  13. Dubois D, Dubois EF (1916) A formula to estimate the approximate surface area if the height and weight be known. Arch Int Med 17:863–871

    Article  CAS  Google Scholar 

  14. Devereux RB, Alonso DR, Lutas EM et al (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458

    Article  CAS  PubMed  Google Scholar 

  15. Mannaerts HF, van der Heide JA, Kamp O, Stoel MG, Twisk J, Visser CA (2004) Early identification of left ventricular remodelling after myocardial infarction, assessed by transthoracic 3D echocardiography. Eur Heart J 25(8):680–687

    Article  PubMed  Google Scholar 

  16. De Castro S, Pelliccia A, Casselli S et al (2006) Remodelling of the left ventricle in athlete’s heart: a three dimensional echocardiographic and magnetic resonance imaging study. Heart 92:970–976

    Google Scholar 

  17. Rudski LG, Lai W, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography. J Am Soc Echocardiogr 23:685–713

    Article  PubMed  Google Scholar 

  18. Lang M, Badano L, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39

    Article  PubMed  Google Scholar 

  19. La Gerche A, Robberecht C, Kuiperi C et al (2010) Lower than expected desmosomal gene mutation prevalence in endurance athletes with complex ventricular arrhythmias of right ventricular origin. Heart 96:1268–1274

    Article  CAS  PubMed  Google Scholar 

  20. Oxborough D, Sharma S, Shave R et al (2012) The right ventricle of the endurance athlete: the relationship between morphology and deformation. J Am Soc Echocardiogr 25:263–271

    Article  PubMed  Google Scholar 

  21. Teske J, Prakken H, De Boeck B et al (2009) Echocardiographic tissue deformation imaging of right ventricular systolic function in endurance athletes. Eur Heart J 30:969–977

    Article  PubMed  Google Scholar 

  22. Neilan TG, Januzzi JL, Lee-Lewandrowski E et al (2006) Myocardial injury and ventricular dysfunction related to training levels among no elite participants in the Boston marathon. Circulation 114:2325–2333

    Article  PubMed  Google Scholar 

  23. Oxborough D, Shave R, Warburton D et al (2011) Dilatation and dysfunction of the right ventricle immediately after ultraendurance exercise exploratory insights from conventional two-dimensional and speckle tracking echocardiography. Circ Cardiovasc Imaging 4:253–263

    Article  PubMed  Google Scholar 

  24. La Gerche A, Macisaac AI, Burns AT et al (2010) Pulmonary transit of agitated contrast is associated with enhanced pulmonary vascular reserve and right ventricular function during exercise. J Appl Physiol 109:1307–1317

    Article  PubMed  Google Scholar 

  25. Stefani L, Pedrizzetti G, De Lucca A, Mercuri R, Innocenti G, Galanti G (2009) Real-time evaluation of longitudinal peak systolic strain (speckle tracking measurement) in left and right ventricles of athletes. Cardiovasc Ultrasound 7:17

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wilson M, o′Hanlon R, Prasad S et al (2011) Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. J Appl Physiol 110:1622–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jate gaonkar SR, Scholtz W, Butz T, Bogunovic N, Faber L, Horstkatte D (2009)Two-dimensional strain and strain rate imaging of the right ventricle in adult patients before and after percutaneous closure of atrial septal defects. Eur J Echocardiogr 10:499–502

    Article  Google Scholar 

  28. Dambrauskaite V, Delcroix M, Claus P et al (2007) Regional right ventricular dysfunction in chronic pulmonary hypertension. J Am Soc Echocardiogr 20:1172–1180

    Article  PubMed  Google Scholar 

  29. Kittipovanonth M, Bellavia D, Chandrasekaran K, Villaraga HR, Abraham TP, Pelikka PA (2008) Doppler myocardial imaging for early detection of right ventricular dysfunction in patients with pulmonary hypertension. J Am Soc Echocardiogr 21:1035–1041

    Article  PubMed  Google Scholar 

  30. Vitarelli A, Sardella G, Di Roma A et al (2012) Assessment of right ventricular function by three-dimensional echocardiography and myocardial strain imaging in adult atrial septal defect before and after percutaneous closure. Int J Cardiovasc Imaging 28:1905–1916

    Article  PubMed  Google Scholar 

  31. Brili S, Stamatopoulos I, Misailidou M, Chrysohoou C et al (2013) Longitudinal strain curves in the RV free wall differ in morphology in patients with pulmonary hypertension compared to controls. Int J of Cardiol 167:2753–2756

    Article  Google Scholar 

  32. Rondelet B, Dewachter C, Kerbaul F et al (2012) Prolonged overcirculation-induced pulmonary arterial hypertension as a cause of right ventricular failure. Eur Heart J 33:1017–1026

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partially funded by grants from the Fundació Clinic (premio Emili Letang, B. Merino), Generalitat de Catalunya (FI-AGAUR 2014–2017, RH 040991, M. Sanz), and from the Spanish Society of Cardiology (Fundación Española del Corazón Investigación Clínica 2012), the Spanish Government (Plan Nacional I + D + i, Ministerio de Innovación y Ciencia DEP 2011–2013 (DEP 2010–20565); Intensificación Actividad Investigadora, Instituto de Salud Carlos III (M Sitges; PI11/01709); Plan Nacional I + D, Ministerio de Economia y Competitividad DEP2013-44923-P, TIN2014-52923-R and FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Sanz de la Garza.

Ethics declarations

Conflict of interest

There are no conflicts of interest to be disclosed.

Additional information

Marta Sitges and Beatriz Merino equally contributed to this work and are both considered as first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 160 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitges, M., Merino, B., Butakoff, C. et al. Characterizing the spectrum of right ventricular remodelling in response to chronic training. Int J Cardiovasc Imaging 33, 331–339 (2017). https://doi.org/10.1007/s10554-016-1014-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-016-1014-x

Keywords

Navigation