Skip to main content
Log in

Effect of Primary Production, Dilution and Preservation on Organic Matter Accumulation for the Lower Cambrian Shale

  • INNOVATIVE TECHNOLOGIES OF OIL AND GAS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

In order to investigate the influence of primary production, dilution and preservation on organic matter accumulation, geochemical data and geochemical proxies of primary production, clastic influx and redox conditions were presented from the Cambrian Niutitang Formation organic-rich shales. The primary production proxies (TOC, Mo, P, Ba and Babio) and redox proxies (Ni/Co, V/Cr, U/Al and Th/U) suggest that the black organic-rich shales of the Niutitang Formation are deposited in anoxic/euxinic condition with high primary production. The pyrite of the Niutitang Formation is composed of spherical framboids, indicating that the anoxic bottom water could not prevail before organic matter degradation during the Niutitang Formation deposition. High primary production enhances organic carbon flux into chemocline layer and bottom water, leading to the anoxic bottom water from oxygen consumption by microorganisms and organic matter degradation. The anoxic bottom water in turn is beneficial to preservation of organic matter. In addition, Ti/Al ratios correlate well with TOC contents through the Niutitang Formation, indicating that clastic inputs enhance the burial rate for preventing organic matter from degradation during Niutitang Formation deposition. Therefore, the accumulation of organic matter in the Niutitang Formation is mainly influenced by primary production rather than the redox conditions in bottom water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achterberg, E.P., Van den Berg, C.M.G., Colombo, C. High resolution monitoring of dissolved Cu and Co in coastal surface waters of the western North Sea. Contin. Shelf Res., 2003, 23, 611-623.

    Article  Google Scholar 

  2. Adelson, J.M., Helz, G.R., Miller, C.V. Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay sediments. Geochim. Cosmochim. Acta, 2001, 65, 237–252.

    Article  CAS  Google Scholar 

  3. Algeo, T.J., Henderson, C.M., Tong, J.N., et al. Plankton and productivity during the Permian–Triassic boundary crisis: An analysis of organic carbon fluxes. Global Planet. Change, 2013, 105, 52-67.

    Article  Google Scholar 

  4. Algeo, T.J., Maynard, J.B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol., 2004, 206, 289-318.

    Article  CAS  Google Scholar 

  5. Anderson, R.F., Fleisher, M.Q., LeHuray, A.P. Concentration, oxidation state and particulate flux of uranium in the Black Sea. Geochim. Cosmochim. Ac., 1989, 53, 2215-2224.

    Article  CAS  Google Scholar 

  6. Arthur, M.A., Sageman, B.B. Marine black shales: depositional mechanisms and environments of ancient deposits. Annu. Rev. Earth Planet Sci., 1994 22, 499-551.

    Article  CAS  Google Scholar 

  7. Bertine, K.K. The deposition of molybdenum in anoxic waters, Mar. Chem., 1972, 1, 43-53.

    Article  CAS  Google Scholar 

  8. Bertram, M.A., Cowen, J.P. Morphological and compositional evidence for biotic precipitation of marine barite. J. Mar. Res., 1997, 55, 577-593.

    Article  CAS  Google Scholar 

  9. 8. Bertrand, P., Shimmield, G., Martinez, P., et al. The glacial ocean productivity hypothesis: the importance of regional temporal and spatial studies. Mar. Geol., 1996, 130, 1-9.

    Article  CAS  Google Scholar 

  10. 9. Brumsack, H.J. Geochemistry of Cretaceous black shales from the Atlantic Ocean (DSDP Legs 11, 14, 36 and 41). Chem. Geol., 2006, 31, 1-25.

    Article  Google Scholar 

  11. 10. Bohacs, K.M., Grawbowski, G.J., Carroll, A.R., et al. Production, and dilution—the many paths to source-rock development, SPE special publication, 2005, 82, p61-101.

    CAS  Google Scholar 

  12. 11. Calvert, S.E., Bustin. R.M., Ingall, E.D. Influence of water column anoxia and sediment supply on the burial and preservation of organic carbon in marine shales. Geochim. Cosmochim. Ac., 1996, 60, 1577-1593.

    Article  CAS  Google Scholar 

  13. 12. Calvert, S.E., Pedersen, T.F. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Mar. Geol., 1993, 113, 67-88.

    Article  CAS  Google Scholar 

  14. 13. Canfield, D.E. Factors influencing organic carbon preservation in marine sediments. Chem. Geol., 1994, 114, 315-329.

    Article  CAS  PubMed  Google Scholar 

  15. 14. Creaney, S., Passey, Q.R. Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework. AAPG Bull., 1993, 77, 386-401.

    CAS  Google Scholar 

  16. 15. Demaison, G.J., Moore, G.T. Anoxic environments and oil source bed genesis. Org. Geochem., 1980, 2, 9-31.

    Article  CAS  Google Scholar 

  17. 16. Dymond, J., Suess, E., Lyle, M. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography, 1992, 7, 163-181.

    Article  Google Scholar 

  18. 17. Fu, X.G., Tan, F.W., Feng, X.L., et al. Early Jurassic anoxic conditions and organic accumulation in the eastern Tethys. Int. Geol. Rev., 2014, 56, 1450-1465.

    Article  Google Scholar 

  19. 18. Fu, X.G., Jian, W., Chen, W.B., et al. Organic accumulation in lacustrine rift basin: constraints from mineralogical and multiple geochemical proxies. Int. J. Earth Sci., 2014, 104, 495-511.

    Article  Google Scholar 

  20. 19. Ganeshram, R.S., François, R., Commeau, J., et al. An experimental investigation of barite formation in seawater. Geochim. Cosmochim. Ac., 2003, 67, 2599-2605.

    Article  CAS  Google Scholar 

  21. 20. Gonneea, M.E., Paytan, A. Phase associations of barium in marine sediments. Mar. Chem., 2006, 100, 124-135.

    Article  CAS  Google Scholar 

  22. 21. Griffith, E.M., Paytan, A. Barite in the ocean–occurrence, geochemistry and palaeoceanographic applications. Sedimentology, 2012, 59, 1817-1835.

    Article  CAS  Google Scholar 

  23. 22. Hedges, J.I., Keil, R.G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem., 1995, 49, 81-115.

    Article  CAS  Google Scholar 

  24. 23. Helz, G.R., Miller, C.V., Charnock, J.M., et al. Mechanisms of molybdenum removal from the sea and its concentration in black shales: EXAFS evidences. Geochim. Cosmochim. Acta, 1996, 60, 3631–3642.

    Article  CAS  Google Scholar 

  25. 24. Henrichs, S.M., Reeburgh, W.S. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J., 1987, 5, 191-238.

    Article  CAS  Google Scholar 

  26. 25. Ibach, L.E.J. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. AAPG Bull., 1982, 66, 170-188.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifei Wang.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 1, pp. 116–119, January–February, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, J., Wang, R. & Zheng, S. Effect of Primary Production, Dilution and Preservation on Organic Matter Accumulation for the Lower Cambrian Shale. Chem Technol Fuels Oils 60, 151–156 (2024). https://doi.org/10.1007/s10553-024-01666-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-024-01666-1

Keywords

Navigation