Skip to main content
Log in

Contribution of Deep Hydrocarbons in Gas Hydrate Formation

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

The reserves of hydrocarbons trapped in gas hydrate deposits are estimated to be enormous, especially comparing with the proven geological resources of natural gas. At the same time the origin of gas hydrate deposits is still debatable. Comparison of the component composition of hydrocarbon mixtures obtained as a result of abiogenic synthesis in the laboratory under thermobaric parameters similar to the conditions of the Earth’s mantle with the composition of samples of natural gas hydrates shows their similarity. This confirms our suggestion about the possible contribution of deep hydrocarbons in gas hydrate formation. Gas hydrate deposits could be formed as a result of upward vertical migration of deep hydrocarbon fluids along faults and fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Milkov, A.V. Earth-Sci. Rev., 66(3-4), 183-197 (2004).

    Article  CAS  Google Scholar 

  2. Ginsburg, G.; Soloviev, V. Submarine gas hydrate estimation: theoretical and empirical approaches. In Proceedings of Offshore Technology Conference.

  3. BP. Statistical Review of World Energy. Availabe online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (accessed on 25-02-2023)

  4. Sloan, E.; Brewer, P.; Paull, C., et al. Eos, Transactions American Geophysical Union, 80(22), 247-247 (1999).

  5. Buffett, B.A.; Zatsepina, O.Y. Geophys. Res. Lett., 26(19), 2981-2984 (1999).

    Article  CAS  Google Scholar 

  6. Collett, T.S.; Johnson, A.; Knapp, C.C., et al. Natural gas hydrates: Energy resource potential and associated geologic hazards, AAPG Memoir 89, AAPG (2010). 145 p.

  7. Sum, A.K.; Koh, C.A.; Sloan, E.D. Industrial & Engineering Chemistry Research, 48(16), 7457-7465 (2009).

    Article  CAS  Google Scholar 

  8. Lorenson, T.D.; Collett, T.S. Mar. Pet. Geol., 92, 477-492 (2018).

    Article  CAS  Google Scholar 

  9. Pohlman, J.W.; Kaneko, M.; Heuer, V.B., et al. Earth Planet. Sci. Lett., 287(3), 504-512 (2009).

    Article  CAS  Google Scholar 

  10. Lai, H.; Deng, Y.; Yang, L., et al. Mar. Pet. Geol., 14, 7106015 (2023).

    Google Scholar 

  11. Rajan, A.; Mienert, J.; Bünz, S., et al. Journal of Geophysical Research: Solid Earth, 117(B3), 1-14 (2012).

    Article  Google Scholar 

  12. Johnson, J.E.; Waghorn, K.A.; Mienert, J., et al. Fire in the Ice, The National Energy Technology Laboratory Methane Hydrate Newsletter, 16(1), 9-12 (2016).

    Google Scholar 

  13. Waghorn, K.A.; Bünz, S.; Plaza-Faverola, A., et al. Geochem. Geophys. Geosyst., 19(8), 2325-2341 (2018).

    Article  CAS  Google Scholar 

  14. Waghorn, K.A.; Vadakkepuliyambatta, S.; Plaza-Faverola, A., et al. Sci. Rep., 10(1), 10679 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Speight, J.G. Handbook of industrial hydrocarbon processes; Gulf Professional Publishing (2019).

  16. Dixit, G.; Ram, H.; Kumar, P. Mar. Pet. Geol., 108, 389-396 (2019).

    Article  CAS  Google Scholar 

  17. Johnson, J.E.; Mienert, J.; Plaza-Faverola, A., et al. Geology, 43(5), 371-374 (2015).

    Article  CAS  Google Scholar 

  18. Cannat, M.; Fontaine, F.; Escartí N, J. Serpentinization and Associated Hydrogen And Methane Fluxes at Slow Spreading Ridges (2010), pp. 241-264.

  19. Proskurowski, G.; Lilley, M.D.; Seewald, J.S., et al. Science, 319(5863), 604-607 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Kutcherov, V.G.; Krayushkin, V.A. Rev. Geophys., 481-30 (2010).

  21. Hornbach, M.J.; Saffer, D.M.; Steven Holbrook, W. Nature, 427(6970), 142-144 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Serovaiskii, A.; Kutcherov, V. Geosciences, 11(4), 1-12 (2021).

    Article  Google Scholar 

  23. Mukhina, E.; Kolesnikov, A.; Kutcherov, V. Sci. Rep., 7(1), 5749 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Serovaiskii, A.Y.; Kutcherov, V.G. Chem. Technol. Fuels Oils, 58(4), 615-619 (2022).

    Article  CAS  Google Scholar 

  25. Serovaiskii, A.; Kutcherov, V. Lithosphere (Russia), 22(6), 840-846 (2023).

    Article  Google Scholar 

  26. Serovaiskii, A.; Kutcherov, V. Sci. Rep., 10(1), 4559 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kutcherov, V.G.; Bendeliani, N.A.; Alekseev, V.A., et al. Doklady Physical Chemistry, 387, 328-330 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kutcherov.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 3, pp. 42–46 May – June, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutcherov, V.G., Serovaiskii, A.Y. Contribution of Deep Hydrocarbons in Gas Hydrate Formation. Chem Technol Fuels Oils 59, 465–470 (2023). https://doi.org/10.1007/s10553-023-01547-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-023-01547-z

Keywords

Navigation