Skip to main content
Log in

New Methods for Atomic-Absorption Determination of Metals in Aviation and Automotive Gasolines

  • METHODS OF ANALYSIS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

Methods were developed for direct atomic absorption determination of lead and lithium as components of antiknock additives in aviation and automotive gasoline at concentrations in the ranges of 100-1700 (lead) and 2.5/0.25-100 (lithium) mg/dm3. The conditions of atomization of the sample solutions and calibration solutions and elimination of the effect of the matrix of the analyzed samples on the results were achieved by suitable dilution of the samples and by including aliquots of solutions simulating the composition of gasolines prepared from individual high-purity hydrocarbons in the composition of the reference solutions and calibration solutions. The methods are characterized by high precision, are simple to use, and can be recommended for quality control and identification of gasoline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  1. G. M. Balak, A. N. Privalenko, A. B. Kvashnin, Nauchnyi Vestnik Vol iskogo Voennogo Instituta Material'nogo Obespechenii (Scientific Bulletin of the Volsk Military Institute of Material Support), No. 2, 86-91 (2019).

  2. R. A. Schvartsman, B. M. Semenov, A. G. Ryabkov, in: New Fuels with Additives: Materials of III International Scientific-Practical Conference, St. Petersburg, June 1-3, 2004. Academy of Applied Research, St. Petersburg (2004), pp. 435-438.

  3. A. M. Danilov, The Use of Additives in Fuels: A Handbook [in Russian], Chemizdat, St. Petersburg (2010), 368 pp.

    Google Scholar 

  4. S. V. Boichenko, S. V. Ivanov, V. G. Burlaka, Motor Fuels and Oils For Modern Technology [in Russian], NAU, Kiev (2005), 216 pp.

    Google Scholar 

  5. RF Patent No. 2152981.

  6. RF Patent No. 2203927.

  7. V. Yu. Mavrin, V. A. Krasnoperov, A. P. Kovalenko, et al., Khimiya i Tekhnologiya Topliv i Masel, No. 6, 27-28 (2001).

    Google Scholar 

  8. V. Yu. Mavrin, A. P. Kovalenko, G. Yu. Klimentova, et al., Neftepererabotka i Neftekhimiya, No. 12, 23-25 (2001).

    Google Scholar 

  9. V. Yu. Mavrin, A. P. Kovalenko, V. I. Gavrilov, in: Interuniversity Collection of Scientific Papers [in Russian], No. 1, Kazan (2002), p. 76.

  10. G. Yu. Klimentova, A. F. Khaidarov, V. Yu. Mavrin, et al., Vestnik Tekhnologicheskogo Universiteta, 19, No. 11, 72-75 (2016).

    CAS  Google Scholar 

  11. G. Yu. Klimentova, A. F. Khaidarov, V. Yu. Mavrin, et al., Vestnik Tekhnologicheskogo Universiteta, 21, No. 8, 40-43 (2018).

    Google Scholar 

  12. G. Yu. Klimentova, V. Yu. Mavrin, et al., Vestnik Tekhnologicheskogo Universiteta, 18, No. 9, 114-116 (2015).

    CAS  Google Scholar 

  13. A. N. Privalenko, G. M. Balak, E.K. Bagramova, Mezhdunarodnyi Tekhniko-Ékonomicheskii Zhurnal, No. 5, 98-110 (2013).

    Google Scholar 

  14. V. Yu. Mavrin, N. A. Donskaya, G. Yu. Klimentova, et al., in: New Fuels with Additives: Materials of the III International Scientific and Practical Conference, June 1-3, 2004, St. Petersburg, Academy of Applied Research, St. Petersburg (2004), pp. 75-83 (2004).

  15. A. P. Kovalenko, V. Yu. Mavrin, I. I. Evgenieva, et al., Khimiya i Tekhnologiya Topliv i Masel, No. 5, 46-47 (2003).

    Google Scholar 

  16. A. P. Kovalenko, V. Yu. Mavrin, I. I. Evgenieva, Zavodskaya Laboratoriya. Diagnostika Materialov, No. 4, 21 (2004).

  17. N. S. Poluektov, S. B. Meshkova, E. N. Poluektova, Analytical Chemistry of Lithium [in Russian], Nauka, Moscow (1974), 204 pp.

    Google Scholar 

  18. GOST 28828-90, Gasolines. Lead Determination Method [in Russian].

  19. GOST 13210-72. Gasolines. Method for Determination of Lead Content by Complexometric Titration [in Russian].

  20. ASTM D3341-05 (2011). Standard Test Method for Lead in Gasoline - Iodine Monochloride Method.

  21. IP 270:1996 (R 2004). Petroleum Products - Determination of Lead Content in Gasoline - Iodine Monochloride Method.

  22. IP 428:2004. Liquid Petroleum Products - Petrol - Determination of Low Lead Concentrations by Atomic Absorption Spectrometry.

  23. GOST R 54278-2010. Automotive gasoline. Methods for the Determination of Lead by X-Ray Spectroscopy.

  24. GOST 33899-2016. Gasoline. Determination of Lead Content by X-Ray Spectroscopy [in Russian].

  25. ASTM D5059-07. Standard Test Methods for Lead in Gasoline by X-Ray Spectroscopy.

  26. IP 228:2004. Determination of Lead Content in Gasoline - X-Ray Spectrometric Method.

  27. Yu. A. Zolotov (Ed.), Fundamentals of Analytical Chemistry. In 2 books. Book 1. General Questions. Separation Methods [in Russian], Vysshaya Shkola, Moscow (2004), 359 pp.

  28. G. P. Bespamyatnov, Yu. A. Krotov, Maximum Permissible Concentration of Chemicals in the Environment. Directory [in Russian], Khimiya, Leningrad (1985), 528 pp.

  29. GOST 12.1.007-76. Occupational Safety System (SSBT). Harmful Substances. Classification and General Safety Requirements [in Russian].

  30. N. F. Losev, A. N. Smagunova, Fundamentals of X-Ray Spectral Fluorescence Analysis [in Russian], Khimiya, Moscow (1982), 208 pp.

    Google Scholar 

  31. RF Patent 2249814.

  32. RF Patent 2058545.

  33. A. A. Pupyshev, Atomic Absorption Spectral Analysis [in Russian], Tekhnosfera, Moscow (2009), 784 pp.

    Google Scholar 

  34. ASTM D7740-11(2016), Standard Practice for Optimization, Calibration, and Validation of Atomic Absorption Spectrometry for Metal Analysis of Petroleum Products and Lubricants.

  35. M. Otto, Modern Methods of Analytical Chemistry [in Russian], Tekhnosfera, Moscow (2008), 544 pp.

    Google Scholar 

  36. GOST 32350-2013, Gasolines. Determination of Lead by Atomic Absorption Spectrometry [in Russian].

  37. ASTM D3237-12, Standard Test Method for Lead in Gasoline by Atomic Absorption Spectroscopy.

  38. G. J. Bishop, B. Elvers, Aviation Fuels. Ullmann’s Encyclopedia of Industrial Chemistry (2019), pp. 1-16.

  39. Aviation Fuels Technical Review, Chevron Corporation (2007), 90 pp.

  40. GOST R ISO 5725-1-2002. Accuracy (correctness and precision) of methods and results of measurements. Part 1. Basic provisions and definitions.

  41. RMG 61-2010. Recommendations for interstate standardization. State system for ensuring the uniformity of measurements. Indicators of accuracy, correctness, precision of methods of quantitative chemical analysis. Assessment methods [in Russian].

  42. GOST 32507-2013. Automotive gasolines and liquid hydrocarbon mixtures. Determination of individual and group carbon-hydrogen composition by capillary gas chromatography [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Balak.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 1, pp. 33 — 41, January — Febtuary, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balak, G.M., Volgin, S.N. & Privalenko, A.N. New Methods for Atomic-Absorption Determination of Metals in Aviation and Automotive Gasolines. Chem Technol Fuels Oils 57, 52–64 (2021). https://doi.org/10.1007/s10553-021-01226-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-021-01226-x

Key words

Navigation