Skip to main content
Log in

Classification of the Hysteresis Phenomena of CO Oxidation in Hydrogen Production

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

The study is motivated by a review of experimental and numerical evidence for the existence of bistability and hysteresis in CO oxidation on platinum group metals. In this paper, a detailed taxonomy of CO oxidation on Pd(111) is achieved by considering it as classification problem of hysteresis functions. This consideration offers a way of classifying the hysteresis behavior into several types using the mathematics of finite state automata, and in this way a through classification is achieved. The classification can provide a global framework for understanding the hysteresis behavior of CO oxidation reaction on Pd(111).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Xin Wang, Jun Yang, Lei Cehn, and Jifeng He, “Application of liquid hydrogen with SMES for efficient use of renewable energy in the Energy Internet,” Energies, 10(2), 1-20 (2017).

    Google Scholar 

  2. J. Moore and B. Shabani, “A critical study of stationary energy storage policies in Austria in an international context: the role of hydrogen and battery technologies,” Energies, 9(9), 674 (2017)

    Article  Google Scholar 

  3. F. Wamg, K. Zhao, H. Zhang, Y. Dong, T. Wang, and D. He, “Low temperature CO catalytic oxidation over supported Pd-Cu catalysts calcined at different temperatures,” Chem. Eng. J., 242, 10-18 (2014).

    Article  Google Scholar 

  4. C. Jaime, W. Stefan, and D. Orazio, “CO oxidation on Ir(111) surfaces under large non-Gaussian noise,” J. Chem. Phys., 137(6), 064105 (2012).

  5. S. Cimino, R. Gerbasi, L. Lisi, G. Mancino, M. Musiani, L. Vazquez-Gomez, and E. Verlato, “Oxidation of CO and CH4 on Pd-Fecralloy foam catalysts prepared by spontaneous deposition.” Chem. Eng. J., 230, 422-431 (2013).

    Article  CAS  Google Scholar 

  6. Z. Kiss, A. W. Brackett, and J. L. Hudson, “Nonuniform reaction rates during CO and CO/H2 oxidation on coupled Pt electrodes,” J. Phys. Chem. B, 108(38), 14599-14608 (2004).

    Article  CAS  Google Scholar 

  7. M. Berdau, G. G. Yelenin, A. Karpowicz, M. Ehsasi, K. Christmann, and J. H. Block, “Macroscopic and mesoscopic characterization of a bistable reaction system: CO oxidation on Pt(111) surface,” J. Chem. Phys., 110, 11551 (1999).

    Article  CAS  Google Scholar 

  8. Y. Suchorski, R. Wrobel, S. Becker, and H. J. Weiss, “CO oxidation on a CeOx/Pt(111) inverse model catalyst surface: catalytic promotion and tuning of kinetic phase diagrams,” Phys. Chem. C, 112, 20012 (2008).

    Article  CAS  Google Scholar 

  9. S. Karpitschka, S. Wehner, and J. Kuppers, “Reaction hysteresis of the CO+O→CO2 reaction on palladium(111),” J. Chem. Phys., 130, 054706 (2009).

    Article  Google Scholar 

  10. R. Imbihl and G. Ertl, “Oscillatory kinetics in heterogeneous catalysis,” Chem. Rev., 95(3), 697-733 (1995).

    Article  CAS  Google Scholar 

  11. S. Wehner, F. Baumann, andd J. Küppers, “Kinetics hysteresis in the CO oxidation reaction on Ir(111) surfaces,” Chem. Phys. Lett., 370, 126 (2003).

    Article  CAS  Google Scholar 

  12. D. Hua and Y. Ma, “Hysteresis phenomena in CO analytic oxidation system in the presence of inhomogeneities if the catalyst surface,” Phys Rev E, 66, 066103 (2003).

    Article  Google Scholar 

  13. M. Bar, C. Zülicke, M. Eiswirth, and G. Ertl, “Theoretical modeling of spatiotemporal self-organization in a surface catalyzed reaction exhibiting bistable kinetics,” J. Chem. Phys., 96 (11), 8595-8604 (1992).

    Article  Google Scholar 

  14. M. S. Moussa, A. Hammoudeh, J. Loboda-Cackovic, and J. H. Block, “The CO-oxidation on Pd-rich surfaces of PdCu (110): hysteresis in reaction rates,” J. Mol. Catal. A: Chem., 96, 271-276 (1995).

    Article  Google Scholar 

  15. D. Liu and J. W. Evans, “Chemcal diffusion of CO in mixed CO+O adlayers and reaction-front propagation in CO oxidation on Pd(100),” J. Chem. Phys., 125(5), 054709 (2006).

    Article  Google Scholar 

  16. N. Pavlenko, J. W. Evans, D. J. Liu, and R. Imbihl, “Catalytic CO oxidation on nanoscale Pt facets: effect of interfacet CO diffusion on bifurcation behavior,” Phys. Rev. E, 65(1), 016121 (2002).

  17. T. Cui, S. Tang, L. Zhang, and D. Yu, “Swallowtail model for predicting the global bifurcation behavior of CO oxidation reactions,” Sci. China Chem., 54(7), 1072-1077 (2011).

    Article  CAS  Google Scholar 

  18. T. Cui, Y. Wang, K. Liu, and J. Jin, “Classification of combustor-inlet interactions for air-breathing Ramjet propulsion,” AIAA J., 53(8), 2237-2255 (2014).

    Article  Google Scholar 

Download references

NOTATION

G-finite state automata;

T-temperature, K;

UR-upper rate;

LR-low rate;

Y-CO fraction

Γ-the set of discrete states;

Σ-the set of discrete events;

Φ-total flux, mL/s.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Sheng.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 1, pp. 35-39, January-February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Sheng, L. Classification of the Hysteresis Phenomena of CO Oxidation in Hydrogen Production. Chem Technol Fuels Oils 56, 50–59 (2020). https://doi.org/10.1007/s10553-020-01110-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-020-01110-0

Keywords

Navigation