Skip to main content
Log in

Effect of the Phase State of the Solvent on Solvent Deactivation of Tar by n-Pentane

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

A Correction to this article was published on 15 March 2019

This article has been updated

Fuel development for solvent deasphalting (SDA), by means of which it is possible to obtain high yields of deasphalted oil (DAO) with acceptable quality for subsequent refining in catalytic cracking processes and hydrocracking in particular, is nowadays becoming increasingly important. In this paper, an experimental study of the SDA of tar (vacuum residue) with n-pentane at various extraction temperatures and pressures was undertaken, and this made it possible to determine the effect of the phase state of the solvent on the yield, composition, and properties of the separation products,. It was shown that transfer of pentane from the liquid phase state to the region of a subcritical and then supercritical fluid (SCF) increases the solubility of the tar components and the yield of the DAO for fixed values of the solvent density. Despite some decrease in the quality of the DAO in the case of supercritical extraction at temperatures close to the critical temperature of the solvent (220°C), the phase state of the pentane has little effect on the metal content of the products, the carbon residue content of the DAO, and the softening point of the asphalt for the given yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Change history

  • 20 May 2019

    The title of the article should read

    Effect of Solvent Phase State on Solvent Deasphalting of Vacuum Residue with <Emphasis Type="Italic">n</Emphasis>-Pentane

    The second author’s name should read

    A. V. Pripahaylo

References

  1. E. J. Houde, M. J. McGrath, When solvent deasphalting is the most appropriate technology for upgrading residue. In: IDTC Conference, London, England, February 2006, 11 pp.

  2. R. Iqbal, A. Khan, O. Eng, R. Floyd, PTQ, Q 2, 1–5 (2008).

  3. M. Motaghi, K Shree, S. Krishnamurthy, Hydrocarbon Processing, 2010, February, pp. 35-38.

  4. F. M. Sultanov, I. R. Khairudinov, É. G. Telyashev, et al., Neftepererabotka i Neftekhimiya, No. 6, 25–28 (2008).

  5. K G. Zinganshin, A. V. Myl’tsyn, A. A. Osintsev, et al., Bashkir Khimicheskii Zhurnal, 20, No. 3, 36-40 (2013).

    Google Scholar 

  6. S. Zhao, C. Xu, X. W. Sun, K. H. Chung, Y. Xiang, Oil & Gas Journal, 108 (12), 52-58 (2010).

    CAS  Google Scholar 

  7. S. Zhao, R. Wang, S. Lin, Petroleum Science & Technology, 24. 297-318 (2006).

    Article  CAS  Google Scholar 

  8. M. Perrut, Ind. Eng. Chem. Res., 39, 4531-4535 (2000).

    Article  CAS  Google Scholar 

  9. K. Zosel, Angew. Chem. Int. Ed. Engl., 17, 702-709 (1978).

    Article  Google Scholar 

  10. C. A. Irani, E. W. Funk, Recent Developments in Separation Science, CRC Press, West Palm Beach, Florida (1977), V. III, Part A, p. 171.

  11. L. Lodi, V. O. Cardenas Concha, R. A. Souza, et al., Petroleum Science and Technology, 32, 2659-2665 (2014).

    Article  CAS  Google Scholar 

  12. J. Rincon, P. Canizares, M. T. Garcia, et al., Ind. Eng. Chem. Res., 42, 4867=4873 (2003).

  13. J. Rincon, P. Canizares, M. T. Garcia, J. of Supercritical Fluids, 39, 315-322 (2007).

    Article  CAS  Google Scholar 

  14. R. N. Cavalcanti, M. A. A. Meireles, in: J. Pawliszyn (Ed.), Comprehensive Sampling and Sample Preparation, Elsevier (2012), Vol. 2, pp. 117-133.

  15. Thermophysical Properties of Pentane, NIST Chemistry WebBook, SRD 69, URL: https://webbook.nist.gov/cgi/fluid.cgi?ID=C109660&Action=Page.

  16. H. Baek, C. H. Kim, S. H. Kim, et al., Energy Eng. J., 2(1), 68–74 (1993).

    Google Scholar 

  17. M. D. Deo, J. Hwang, F. V. Hanson, Fuel, 71, 1519-1526 (1992).

    Article  CAS  Google Scholar 

  18. M. S. Kim, K. S. Yang, J. S. Hwang, Petroleum Science and Technology, 15 (9&10). 921-942 (1997).

    Article  Google Scholar 

  19. G. Brons, M. Yu. Jimmy, Energy Fuels, 9, 641-647 (1995).

    Article  CAS  Google Scholar 

  20. I. Honjo, K. Ohta, K. Kamiya, et al., Sekiyu Gakkaishi, 32, No. 4, 199-205 (1989).

    Article  CAS  Google Scholar 

  21. M. Fan, X. Sun, Z. Xu, et al., Energy Fuels, 25, 3060-3067 (2011).

    Article  CAS  Google Scholar 

  22. C. Leyva, J. Ancheyta, C. Berrueco, et al., Fuel Processing Technology, 106, 734-738 (2013).

    Article  CAS  Google Scholar 

  23. F. M. Sultanov, I. R. Khairudinov, T. B. Shakirov, et al., Mir Nefteproduktov, No. 4, 9–11 (2016).

Download references

The work was conducted with financial support from the Ministry of Education and Science of the Russian Federation, contract No. 03.G25.31.0238 of April 28, 2017, in the realization of a complex project of creation of highly technological production “Development and Creation of Solvent Technology of Refining of Heavy Oil Feedstock”, NIOKTR, the results of which are presented in the publication, Moscow Physicotechnical Institute, which is the leading organ of NIOKTR, contract No. 03.G25.31.0238 of April 28, 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pripakhailo.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 6, pp. 32 – 39, November –December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magomedov, R.N., Pripakhailo, A.V. & Maryutina, T.A. Effect of the Phase State of the Solvent on Solvent Deactivation of Tar by n-Pentane. Chem Technol Fuels Oils 54, 721–732 (2019). https://doi.org/10.1007/s10553-019-00979-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-019-00979-w

Key words

Navigation