Skip to main content
Log in

Influence of UV-Activation of Modified Zeolite Catalysts on Their Physicochemical and Catalytic Properties in Their Process of Getting High-Octane Gasoline Components

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

The influence of UV-irradiation by an XeCl excimer lamp on the physicochemical and catalytic properties of MFI-type high-silica zeolites modified by cobalt tungsto- and molybdobismuthates in the process of getting high-octane gosoline components is studied. It is show that the concentration of acidic centers can be increased by 76%; the arene yield, by 4-13 wt%; and the octane number of the products, by 2-3 points as compared with starting zeolite if cobalt tungstobismuthate heteropoly compound (1 wt%) is used as the modifier and the material is activated by UV-irradiation for 24 min. It is established that UV-irradiation of modified zeolites increases the concentration of acidic centers and decreases the adsorption capacity and specific surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Na and G. A. Somorjai, Catal. Lett., 145, 193-213 (2015)

    Article  CAS  Google Scholar 

  2. A. Galadima and O. Muraza, J. Nat. Gas Sci. Eng., 25, 303-316 (2015).

    Article  CAS  Google Scholar 

  3. C. Avelino, J. Catal., 216, 298-312 (2003).

    Article  Google Scholar 

  4. F. Zhou, Y. Gao, G. Wu, et al., Microporous Mesoporous Mater., 240, 96-107 (2017).

    Article  CAS  Google Scholar 

  5. N. Katada, S. Sota, N. Morishita, et al., Catal. Sci. Technol., 5, No. 3, 1864-1869 (2015).

    Article  CAS  Google Scholar 

  6. P. Y. Dapsens, C. Mondelli, and J. Perez-Ramirez, ChemSusChem, 6, 831 (2013).

    Article  CAS  Google Scholar 

  7. T. T. Ha Vu, L. V. Tiep, P. Meriaudeau, and C. Naccache, J. Mol. Catal. A: Chem., 181, 283 (2002).

    Article  Google Scholar 

  8. M. A. Sanhoob, O. Muraza, E. N. Shafei, et al., Appl. Catal., B, 210, 432-443 (2017).

    Article  CAS  Google Scholar 

  9. L. G. Possato, T. F. Chaves, W. H. Cassinelli, et al., Catal. Today, 289, 20-28 (2017).

    Article  CAS  Google Scholar 

  10. O. B. Ayodele, J. CO2Util., 20, 368-377 (2017).

  11. T. Q. Silva, M. B. dos Santos, A. A. C. Santiago, et al., Catal. Today, 289, 38-46 (2017).

    Article  CAS  Google Scholar 

  12. M. H. Mahyuddin, A. Staykov, Y. Shiota, et al., ACS Catal., 7, No. 6, 3741-3751 (2017).

    Article  CAS  Google Scholar 

  13. D. Mitsuyoshi, K. Kuroiwa, Y. Kataoka, et al., Microporous Mesoporous Mater., 242, 118-126 (2017).

    Article  CAS  Google Scholar 

  14. Q. Shen, L. Zhang, M. Wu, et al., Mater. Res. Bull., 87, 1-5 (2017).

    Article  CAS  Google Scholar 

  15. L. Yu, M. Grahn, P. Ye, and J. Hedlund, J. Membr. Sci., 524, 428-435 (2017).

    Article  CAS  Google Scholar 

  16. F. Velichkova, H. Delmas, C. Julcour, and B. Koumanova, AIChE J., 63, No. 2, 669-679 (2017).

    Article  CAS  Google Scholar 

  17. N. Kosinov, F. J. A. G. Coumans, E. A. Uslamin, et al., ACS Catal., 7, No. 1, 520-529 (2017).

    Article  CAS  Google Scholar 

  18. K. Miyake, Y. Hirota, K. Ono, et al., New J. Chem., 416, No. 6, 2235-2240 (2017).

    Article  Google Scholar 

  19. A. I. Hussain, A. Palani, A. M. Aitani, et al., Fuel Process. Technol., 161, 23-32 (2017).

    Article  CAS  Google Scholar 

  20. A. Usman, M. A. B. Siddiqui, A. Hussain, et al., Chem. Eng. Res. Des., 120, 121-137 (2017).

    Article  CAS  Google Scholar 

  21. Y. Cheng, R. H. Liao, J. S. Li, et al., J. Mater. Process. Technol., 206, 445 (2008).

    Article  CAS  Google Scholar 

  22. G. S. Bozhenkova and I. S. Khomyakov, Theor. Found. Chem. Eng., 50, No. 4. 543 (2016).

    Article  Google Scholar 

  23. L. Wei, S. Y. Yu, G. D. Meitzner, et al., J. Phys. Chem. B, 105, 1177 (2001).

    Article  Google Scholar 

  24. L. R. Raddi de Araujo and M. Schmal, Appl. Catal., A, 235, 139-147 (2002).

    Article  CAS  Google Scholar 

  25. F. Jin and Y. Li, Catal. Today, No. 1-2, 1-7 (2008).

  26. B. Xu, C. Sievers, et al., J. Catal., 244, No. 2, 163-168 (2006).

    Article  CAS  Google Scholar 

  27. V. I. Erofeev, A. S. Medvedev, L. M. Koval, et al., Russ. J. Appl. Chem., 84, No. 10, 1760-1766 (2011).

    Article  CAS  Google Scholar 

  28. V. I. Erofeev, V. V. Gornostaev, et al., RU Pat. 2,236,289, Sept. 20, 2004.

  29. V. I. Erofeev, I. S. Khomyakov, and L. A. Egorova, Theor. Found. Chem., Eng., 48, No. 1, 74 (2014).

    Article  Google Scholar 

  30. V. B. Kazanskii, Kh. M. Minachev, B. K. Nafedov, et al., Kinet. Katal., 24, No. 3, 679-682 (1983).

    CAS  Google Scholar 

  31. E. A. Paukshtis, Infrared Spectroscopy in Heterogeneous Acid—Base Catalysis [in Russian], Nauka, Novosibirsk, 1992, 254 pp.

    Google Scholar 

Download references

Acknowledgments

The work was performed in the framework of the Program for Enhanced Competitiveness of TPU Among Leading Global Research Centers (VIU funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Khomyakov.

Additional information

Translated from khimiya i Tekhnologiya Topliv i Masel, No, 1, pp. 7 – 11, January – February, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khomyakov, I.S., Gorshkov, A.M. Influence of UV-Activation of Modified Zeolite Catalysts on Their Physicochemical and Catalytic Properties in Their Process of Getting High-Octane Gasoline Components. Chem Technol Fuels Oils 54, 8–14 (2018). https://doi.org/10.1007/s10553-018-0891-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-018-0891-1

Keywords

Navigation