Skip to main content
Log in

Risk factors for de novo and therapy-related myelodysplastic syndromes (MDS)

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

Myelodysplastic syndromes (MDS) are classified as de novo and therapy-related (tMDS). We evaluated associations between MDS risk factors separately for de novo and tMDS.

Methods

The study population included 346 de novo MDS cases, 37 tMDS cases and 682 population controls frequency matched by age and sex. Polytomous logistic regression was performed to calculate odds ratios (OR) and 95% confidence intervals (CI).

Results

After adjustment, former smoking status (OR = 1.45, 95% CI: 1.10–1.93), personal history of autoimmune disease (OR = 1.34, 95% CI: 0.99–1.82) and exposure to benzene (OR = 1.48, 95% CI: 1.00–2.19) were associated with de novo MDS. Risk estimates for the associations between smoking, autoimmune disease, and benzene exposure were similar in magnitude but non-significant in tMDS cases. Among individuals with a previous diagnosis of cancer, de novo MDS cases and controls were more likely to have had a previous solid tumor, while tMDS cases more commonly had a previous hematologic malignancy.

Conclusions

We observed similar associations between smoking, history of autoimmune disease and benzene exposure in de novo and tMDS although estimates for tMDS were imprecise due to small sample sizes. Future analyses with larger sample sizes will be required to confirm whether environmental factors influence risk of tMDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data are available by request from the investigators.

Code availability

Analysis code is available by request.

References

  1. Tefferi A (2009) Myelodysplastic syndromes. N Engl J Med 14

  2. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 127:2391–2405. https://doi.org/10.1182/blood-2016-03-643544

    Article  CAS  PubMed  Google Scholar 

  3. Roos AJD, Deeg HJ, Onstad L, Kopecky KJ, Bowles EJA, Yong M, Fryzek J, Davis S (2010) Incidence of myelodysplastic syndromes within a nonprofit healthcare system in western Washington state, 2005–2006. Am J Hematol 85:765–770. https://doi.org/10.1002/ajh.21828

    Article  PubMed  Google Scholar 

  4. Hulegårdh E, Nilsson C, Lazarevic V, Garelius H, Antunovic P, Derolf ÅR, Möllgård L, Uggla B, Wennström L, Wahlin A, Höglund M, Juliusson G, Stockelberg D, Lehmann S (2015) Characterization and prognostic features of secondary acute myeloid leukemia in a population-based setting: a report from the Swedish acute leukemia registry. Am J Hematol 90:208–214. https://doi.org/10.1002/ajh.23908

    Article  PubMed  Google Scholar 

  5. Larson RA (2009) Therapy-related myeloid neoplasms. Haematologica. 94:454–459. https://doi.org/10.3324/haematol.2008.005157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sweeney MR, Applebaum KM, Arem H, Braffett BH, Poynter JN, Robien K (2019) Medical conditions and modifiable risk factors for Myelodysplastic syndrome: a systematic review. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol 28:1502–1517. https://doi.org/10.1158/1055-9965.EPI-19-0106

    Article  Google Scholar 

  7. Horiike S, Misawa S, Kaneko H, Sasai Y, Kobayashi M, Fujii H, Tanaka S, Yagita M, Abe T, Kashima K, Taniwaki M (1999) Distinct genetic involvement of the TP53 gene in therapy-related leukemia and myelodysplasia with chromosomal losses of Nos 5 and/or 7 and its possible relationship to replication error phenotype. Leukemia. 13:1235–1242

    Article  CAS  PubMed  Google Scholar 

  8. Ben-Yehuda D, Krichevsky S, Caspi O, Rund D, Polliack A, Abeliovich D, Zelig O, Yahalom V, Paltiel O, Or R, Peretz T, Ben-Neriah S, Yehuda O, Rachmilewitz EA (1996) Microsatellite instability and p53 mutations in therapy-related leukemia suggest mutator phenotype. Blood. 88:4296–4303

    Article  CAS  PubMed  Google Scholar 

  9. Strom SS, Gu Y, Gruschkus SK, Pierce SA, Estey EH (2005) Risk factors of myelodysplastic syndromes: a case-control study. Leukemia. 19:1912–1918. https://doi.org/10.1038/sj.leu.2403945

    Article  CAS  PubMed  Google Scholar 

  10. West RR, Stafford DA, Farrow A, Jacobs A (1995) Occupational and environmental exposures and myelodysplasia: a case-control study. Leuk Res 19:127–139

    Article  CAS  PubMed  Google Scholar 

  11. Lv L, Lin G, Lin G, Gao X, Wu C, Dai J, Yang Y, Zou H, Sun H, Gu M, Chen X, Fu H, Bao L (2011) Case–control study of risk factors of myelodysplastic syndromes according to World Health Organization classification in a Chinese population. Am J Hematol 86:163–169. https://doi.org/10.1002/ajh.21941

    Article  PubMed  Google Scholar 

  12. Poynter JN, Richardson M, Roesler M, Blair CK, Hirsch B, Nguyen P, Cioc A, Cerhan JR, Warlick E (2017) Chemical exposures and risk of acute myeloid leukemia and myelodysplastic syndromes in a population-based study. Int J Cancer 140:23–33. https://doi.org/10.1002/ijc.30420

    Article  CAS  PubMed  Google Scholar 

  13. Pekmezovic T, Suvajdzic Vukovic N, Kisic D, Grgurevic A, Bogdanovic A, Gotic M, Bakrac M, Brkic N (2006) A case-control study of myelodysplastic syndromes in Belgrade (Serbia Montenegro). Ann Hematol 85:514. https://doi.org/10.1007/s00277-006-0128-y

    Article  PubMed  Google Scholar 

  14. Schnatter AR, Glass DC, Tang G, Irons RD, Rushton L (2012) Myelodysplastic syndrome and benzene exposure among petroleum workers: an international pooled analysis. JNCI J Natl Cancer Inst 104:1724–1737. https://doi.org/10.1093/jnci/djs411

    Article  CAS  PubMed  Google Scholar 

  15. Ciccone G, Mirabelli D, Levis A, Gavarotti P, Rege-Cambrin G, Davico L, Vineis P (1993) Myeloid leukemias and myelodysplastic syndromes: chemical exposure, histologic subtype and cytogenetics in a case-control study. Cancer Genet Cytogenet 68:135–139

    Article  CAS  PubMed  Google Scholar 

  16. Rigolin GM, Cuneo A, Roberti MG, Bardi A, Bigoni R, Piva N, Minotto C, Agostini P, De Angeli C, Del Senno L, Spanedda R, Castoldi G (1998) Exposure to myelotoxic agents and myelodysplasia: case-control study and correlation with clinicobiological findings. Br J Haematol 103:189–197

    Article  CAS  PubMed  Google Scholar 

  17. Goldberg H, Lusk E, Moore J, Nowell PC, Besa EC (1990) Survey of exposure to genotoxic agents in primary myelodysplastic syndrome: correlation with chromosome patterns and data on patients without hematological disease. Cancer Res 50:6876–6881

    CAS  PubMed  Google Scholar 

  18. Ma X, Lim U, Park Y, Mayne ST, Wang R, Hartge P, Hollenbeck AR, Schatzkin A (2009) Obesity, lifestyle factors, and risk of Myelodysplastic syndromes in a large US cohort. Am J Epidemiol 169:1492–1499. https://doi.org/10.1093/aje/kwp074

    Article  PubMed  PubMed Central  Google Scholar 

  19. Björk J, Albin M, Mauritzson N, Strömberg U, Johansson B, Hagmar L (2000) Smoking and myelodysplastic syndromes. Epidemiol Camb Mass 11:285–291

    Article  Google Scholar 

  20. Ugai T, Matsuo K, Sawada N, Iwasaki M, Yamaji T, Shimazu T, Sasazuki S, Inoue M, Kanda Y, Tsugane S (2017) Smoking and alcohol and subsequent risk of myelodysplastic syndromes in Japan: the Japan public health Centre-based prospective study. Br J Haematol 178:747–755. https://doi.org/10.1111/bjh.14749

    Article  CAS  PubMed  Google Scholar 

  21. Ido M, Nagata C, Kawakami N, Shimizu H, Yoshida Y, Nomura T, Mizoguchi H (1996) A case-control study of myelodysplastic syndromes among Japanese men and women. Leuk Res 20:727–731

    Article  CAS  PubMed  Google Scholar 

  22. Pasqualetti P, Festuccia V, Acitelli P, Collacciani A, Giusti A, Casale R (1997) Tobacco smoking and risk of haematological malignancies in adults: a case-control study. Br J Haematol 97:659–662

    Article  CAS  PubMed  Google Scholar 

  23. Nisse C, Lorthois C, Dorp V, Eloy E, Haguenoer JM, Fenaux P (1995) Exposure to occupational and environmental factors in myelodysplastic syndromes. Preliminary results of a case-control study, Leukemia 9:693–699

    CAS  PubMed  Google Scholar 

  24. Poynter JN, Richardson M, Blair CK, Roesler MA, Hirsch BA, Nguyen P, Cioc A, Warlick E, Cerhan JR, Ross JA (2016) Obesity over the life course and risk of acute myeloid leukemia and Myelodysplastic syndromes. Cancer Epidemiol 40:134–140. https://doi.org/10.1016/j.canep.2015.12.005

    Article  PubMed  Google Scholar 

  25. Jin J, Yu M, Hu C, Ye L, Xie L, Jin J, Chen F, Hongyan T (2014) Pesticide exposure as a risk factor for Myelodysplastic syndromes: a meta-analysis based on 1,942 cases and 5,359 controls. PLoS One https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110850. Accessed 27 Mar 2019

  26. Anderson LA, Pfeiffer RM, Landgren O, Gadalla S, Berndt SI, Engels EA (2009) Risks of myeloid malignancies in patients with autoimmune conditions. Br J Cancer 100:822–828. https://doi.org/10.1038/sj.bjc.6604935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Duffy EA, Nguyen PL, Cioc A, Warlick E, Roesler MA, Poynter JN (2020) Alcohol use is not a significant contributor to myelodysplastic syndromes. Cancer Causes Control 31:549–557. https://doi.org/10.1007/s10552-020-01298-w

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kleinbaum DG, Klein M (2010) Polytomous logistic regression. In: Kleinbaum DG, Klein M (eds) Logist. Regres. Self-learn. Text. Springer, New York, pp 429–462. https://doi.org/10.1007/978-1-4419-1742-3_12

    Chapter  Google Scholar 

  29. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellström-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 114:937–951. https://doi.org/10.1182/blood-2009-03-209262

    Article  CAS  PubMed  Google Scholar 

  30. Wang QQ, Yu SC, Qi X, Hu YH, Zheng WJ, Shi JX, Yao HY (2019) Overview of logistic regression model analysis and application. Zhonghua Yu Fang Yi Xue Za Zhi 53:955–960. https://doi.org/10.3760/cma.j.issn.0253-9624.2019.09.018

    Article  CAS  PubMed  Google Scholar 

  31. Bhatia S (2013) Therapy-related myelodysplasia and acute myeloid leukemia. Semin Oncol 40. https://doi.org/10.1053/j.seminoncol.2013.09.013

  32. Krishnan A, Bhatia S, Slovak ML, Arber DA, Niland JC, Nademanee A, Fung H, Bhatia R, Kashyap A, Molina A, O’Donnell MR, Parker PA, Sniecinski I, Snyder DS, Spielberger R, Stein A, Forman SJ (2000) Predictors of therapy-related leukemia and myelodysplasia following autologous transplantation for lymphoma: an assessment of risk factors. Blood. 95:1588–1593

    Article  CAS  PubMed  Google Scholar 

  33. Govindarajan R, Jagannath S, Flick JT, Vesole DH, Sawyer J, Barlogie B, Tricot G (1996) Preceding standard therapy is the likely cause of MDS after autotransplants for multiple myeloma. Br J Haematol 95:349–353

    Article  CAS  PubMed  Google Scholar 

  34. Vardiman JW, Harris NL, Brunning RD (2002) The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 100:2292–2302. https://doi.org/10.1182/blood-2002-04-1199

    Article  CAS  PubMed  Google Scholar 

  35. Morton LM, Dores GM, Schonfeld SJ, Linet MS, Sigel BS, Lam CJK, Tucker MA, Curtis RE (2019) Association of Chemotherapy for solid tumors with development of therapy-related Myelodysplastic syndrome or acute myeloid leukemia in the modern era. JAMA Oncol 5:318–325. https://doi.org/10.1001/jamaoncol.2018.5625

    Article  PubMed  Google Scholar 

  36. Sun L-M, Lin C-L, Lin M-C, Liang J-A, Kao C-H (2015) Radiotherapy- and chemotherapy-induced myelodysplasia syndrome. Medicine (Baltimore) 94. https://doi.org/10.1097/MD.0000000000000737

  37. McNerney ME, Godley LA, Le Beau MM (2017) Therapy-related myeloid neoplasms: when genetics and environment collide. Nat Rev Cancer 17:513–527. https://doi.org/10.1038/nrc.2017.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanderson BJ, Shield AJ (1996) Mutagenic damage to mammalian cells by therapeutic alkylating agents. Mutat Res 355:41–57

    Article  PubMed  Google Scholar 

  39. Christiansen DH, Andersen MK, Pedersen-Bjergaard J (2001) Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol Off J Am Soc Clin Oncol 19:1405–1413. https://doi.org/10.1200/JCO.2001.19.5.1405

    Article  CAS  Google Scholar 

  40. Maung SW, Burke C, Hayde J, Walshe J, McDermott R, Desmond R, McHugh J, Enright H (2017) A review of therapy-related myelodysplastic syndromes and acute myeloid leukaemia (t-MDS/AML) in Irish patients: a single Centre experience. Hematol Amst Neth 22:341–346. https://doi.org/10.1080/10245332.2017.1286539

    Article  Google Scholar 

  41. Smith SM, Le Beau MM, Huo D, Karrison T, Sobecks RM, Anastasi J, Vardiman JW, Rowley JD, Larson RA (2003) Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 102:43–52. https://doi.org/10.1182/blood-2002-11-3343

    Article  CAS  PubMed  Google Scholar 

  42. IARC (2012) Monographs on the evaluation of carcinogenic risks to humans. Rev Hum Carcinog Chem Agents Relat Occup 100F

  43. Infante P, Wagoner J, Rinsky R, Young R (1977) Leukemia in Benzene Workers. Lancet 310:76–78

    Article  Google Scholar 

  44. Komrokji RS, Kulasekararaj A, Al Ali NH, Kordasti S, Bart-Smith E, Craig BM, Padron E, Zhang L, Lancet JE, Pinilla-Ibarz J, List AF, Mufti GJ, Epling-Burnette PK (2016) Autoimmune diseases and myelodysplastic syndromes. Am J Hematol 91:E280–E283. https://doi.org/10.1002/ajh.24333

    Article  PubMed  Google Scholar 

  45. Montoro J, Gallur L, Merchán B, Molero A, Roldán E, Martínez-Valle F, Villacampa G, Navarrete M, Ortega M, Castellví J, Saumell S, Bobillo S, Bosch F, Valcárcel D (2018) Autoimmune disorders are common in myelodysplastic syndrome patients and confer an adverse impact on outcomes. Ann Hematol 97:1349–1356. https://doi.org/10.1007/s00277-018-3302-0

    Article  PubMed  Google Scholar 

  46. Surveillance, Epidemiology, and End Results (SEER) Program (n.d.) SEER*Stat Database: Incidence - SEER 18 Regs Research Data, Nov 2014 Sub (2001–2012) Bethesda, Md: National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch; released April 2015, based on the November 2014 submission., https://seer.cancer.gov/data/. Accessed 14 Mar 2019

Download references

Funding

The study was funded by a National Institutes of Health grant (R01 CA142714 to J.N.P.)

Author information

Authors and Affiliations

Authors

Contributions

RY and JNP came up with the study concept; RY, JNP and TM contributed to statistical analysis; MAR was responsible for data collection; AC, BH, PLN, and EW conducted clinical review; RY and JNP wrote the manuscript; all authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Jenny N. Poynter.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest to disclose.

Ethics approval

The Institutional Review Boards for each participating institution approved this study, which included the University of Minnesota, the Mayo Clinic, the Minnesota Department of Health, and area hospitals.

Consent to participate

Informed consent was obtained from all participants.

Consent for publication

All authors have reviewed and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarosh, R., Roesler, M.A., Murray, T. et al. Risk factors for de novo and therapy-related myelodysplastic syndromes (MDS). Cancer Causes Control 32, 241–250 (2021). https://doi.org/10.1007/s10552-020-01378-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-020-01378-x

Keywords

Navigation