Skip to main content
Log in

Ovarian Cancer in Women of African Ancestry (OCWAA) consortium: a resource of harmonized data from eight epidemiologic studies of African American and white women

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

Although the incidence rate of epithelial ovarian cancer (EOC) is somewhat lower in African American (AA) than white women, survival is worse. The Ovarian Cancer in Women of African Ancestry (OCWAA) consortium will overcome small, study-specific sample sizes to better understand racial differences in EOC risk and outcomes.

Methods

We harmonized risk factors and prognostic characteristics from eight U.S. studies: the North Carolina Ovarian Cancer Study (NCOCS), the Los Angeles County Ovarian Cancer Study (LACOCS), the African American Cancer Epidemiology Study (AACES), the Cook County Case–Control Study (CCCCS), the Black Women’s Health Study (BWHS), the Women’s Health Initiative (WHI), the Multiethnic Cohort Study (MEC), and the Southern Community Cohort Study (SCCS).

Results

Determinants of disparities for risk and survival in 1,146 AA EOC cases and 2,922 AA controls will be compared to 3,368 white EOC cases and 10,270 white controls. Analyses include estimation of population-attributable risk percent (PAR%) by race.

Conclusion

OCWAA is uniquely positioned to study the epidemiology of EOC in AA women compared with white women to address disparities. Studies of EOC have been underpowered to address factors that may explain AA-white differences in the incidence and survival. OCWAA promises to provide novel insight into disparities in ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. DeSantis C, Naishadham D, Jemal A (2013) Cancer statistics for African Americans, 2013. CA Cancer J Clin 63(3):151–166

    Article  PubMed  Google Scholar 

  2. Noone A et al (2018) SEER cancer statistics review, 1975-2015. Based on November 2017 SEER data submission, posted to the SEER web site, April 2018. National Cancer Institute, Bethesda

    Google Scholar 

  3. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34

    Article  PubMed  Google Scholar 

  4. DeSantis CE et al (2016) Cancer statistics for African Americans, 2016: progress and opportunities in reducing racial disparities. CA Cancer J Clin 66(4):290–308

    Article  PubMed  Google Scholar 

  5. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30

    Article  PubMed  Google Scholar 

  6. Surveillance Epidemiology and End Results (SEER) Program (2015) Seer*Stat database: incidence-SEER 18 regs research data + hurricane Katrina impacted Louisiana cases, Nov 2015 sub (2000–2013). National Cancer Institute, DCCPS, Surveillance Research Program, Bethesda

    Google Scholar 

  7. Doherty JA, Peres LC, Wang C, Way GP, Greene CS, Schildkraut JM (2017) Challenges and opportunities in studying the epidemiology of ovarian cancer subtypes. Curr Epidemiol Rep 4(3):211–220

    Article  PubMed  PubMed Central  Google Scholar 

  8. Peres LC et al (2018) Invasive epithelial ovarian cancer survival by histotype and disease stage. JNCI J Natl Cancer Inst 111(1):djy071

    Google Scholar 

  9. Beral V, Doll R, Hermon C, Peto R, Reeves G (2008) Ovarian cancer and oral contraceptives: collaborative reanalysis of data from 45 epidemiological studies including 23,257 women with ovarian cancer and 87,303 controls. Lancet 371(9609):303–314

    Article  CAS  PubMed  Google Scholar 

  10. Adami H-O et al (1994) Parity, age at first childbirth, and risk of ovarian cancer. Lancet 344(8932):1250–1254

    Article  CAS  PubMed  Google Scholar 

  11. Danforth KN, Tworoger SS, Hecht JL, Rosner BA, Colditz GA, Hankinson SE (2007) Breastfeeding and risk of ovarian cancer in two prospective cohorts. Cancer Causes Control 18(5):517–523

    Article  PubMed  Google Scholar 

  12. Luan N-N, Wu Q-J, Gong T-T, Vogtmann E, Wang Y-L, Lin B (2013) Breastfeeding and ovarian cancer risk: a meta-analysis of epidemiologic studies. Am J Clin Nutr 98(4):1020–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rice MS, Murphy MA, Tworoger SS (2012) Tubal ligation, hysterectomy and ovarian cancer: a meta-analysis. J Ovarian Res 5(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sieh W et al (2013) Tubal ligation and risk of ovarian cancer subtypes: a pooled analysis of case-control studies. Int J Epidemiol 42(2):579–589

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cooper GS, Schildkraut JM, Whittemore AS, Marchbanks PA (1999) Pregnancy recency and risk of ovarian cancer. Cancer Causes Control 10(5):397–402

    Article  CAS  PubMed  Google Scholar 

  16. Beral V, Bull D, Green J, Reeves G (2007) Ovarian cancer and hormone replacement therapy in the Million Women Study. Lancet 369(9574):1703–1710

    Article  CAS  PubMed  Google Scholar 

  17. Coughlin SS, Giustozzi A, Smith SJ, Lee NC (2000) A meta-analysis of estrogen replacement therapy and risk of epithelial ovarian cancer. J Clin Epidemiol 53(4):367–375

    Article  CAS  PubMed  Google Scholar 

  18. Gong T-T, Wu Q-J, Vogtmann E, Lin B, Wang Y-L (2013) Age at menarche and risk of ovarian cancer: a meta-analysis of epidemiological studies. Int J Cancer 132(12):2894–2900

    Article  CAS  PubMed  Google Scholar 

  19. Pearce CL, Chung K, Pike MC, Wu AH (2009) Increased ovarian cancer risk associated with menopausal estrogen therapy is reduced by adding a progestin. Cancer 115(3):531–539

    Article  PubMed  Google Scholar 

  20. Rossing MA, Cushing-Haugen KL, Wicklund KG, Doherty JA, Weiss NS (2007) Menopausal hormone therapy and risk of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 16(12):2548–2556

    Article  CAS  PubMed  Google Scholar 

  21. Trabert B et al (2012) Ovarian cancer and menopausal hormone therapy in the NIH-AARP diet and health study. Br J Cancer 107(7):1181–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou B et al (2008) Hormone replacement therapy and ovarian cancer risk: a meta-analysis. Gynecol Oncol 108(3):641–651

    Article  CAS  PubMed  Google Scholar 

  23. Schildkraut JM, Risch N, Thompson WD (1989) Evaluating genetic association among ovarian, breast, and endometrial cancer: evidence for a breast/ovarian cancer relationship. Am J Hum Genet 45(4):521–529

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Collaborative Group on Epidemiological Studies of Ovarian Cancer (2012) Ovarian cancer and body size: individual participant meta-analysis including 25,157 women with ovarian cancer from 47 epidemiological studies. PLoS Med 9(4):e1001200

    Article  PubMed Central  Google Scholar 

  25. Collaborative Group on Epidemiological Studies of Ovarian Cancer (2015) Menopausal hormone use and ovarian cancer risk: individual participant meta-analysis of 52 epidemiological studies. Lancet 385(9980):1835–1842

    Article  CAS  PubMed Central  Google Scholar 

  26. Trabert B et al (2014) Aspirin, nonaspirin nonsteroidal anti-inflammatory drug, and acetaminophen use and risk of invasive epithelial ovarian cancer: a pooled analysis in the Ovarian Cancer Association Consortium. J Natl Cancer Inst 106(2):431

    Article  CAS  Google Scholar 

  27. Terry KL et al (2013) Genital powder use and risk of ovarian cancer: a pooled analysis of 8,525 cases and 9,859 controls. Cancer Prev Res 6(8):811–821

    Article  Google Scholar 

  28. Wentzensen N et al (2016) Ovarian cancer risk factors by histologic subtype: an analysis from the ovarian cancer cohort consortium. J Clin Oncol 34(24):2888–2898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Faber MT et al (2013) Cigarette smoking and risk of ovarian cancer: a pooled analysis of 21 case-control studies. Cancer Causes Control 24(5):989–1004

    Article  PubMed  Google Scholar 

  30. Pearce CL et al (2012) Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case-control studies. Lancet Oncol 13(4):385–394

    Article  PubMed  PubMed Central  Google Scholar 

  31. John EM, Whittemore AS, Harris R, Itnyre J (1993) Characteristics relating to ovarian cancer risk: collaborative analysis of seven U.S. case-control studies. epithelial ovarian cancer in black women. JNCI J Natl Cancer Inst 85(2):142–147

    Article  CAS  PubMed  Google Scholar 

  32. Hoyo C et al (2005) Anthropometric measurements and epithelial ovarian cancer risk in African-American and White women. Cancer Causes Control 16(8):955–963

    Article  PubMed  Google Scholar 

  33. Moorman PG, Palmieri RT, Akushevich L, Berchuck A, Schildkraut JM (2009) Ovarian cancer risk factors in African-American and White women. Am J Epidemiol 170(5):598–606

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ness RB, Grisso JA, Klapper J, Vergona R (2000) Racial differences in ovarian cancer risk. J Natl Med Assoc 92(4):176–182

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu AH, Pearce CL, Tseng C-C, Pike MC (2015) African Americans and Hispanics remain at lower risk of ovarian cancer than non-Hispanic Whites after considering nongenetic risk factors and oophorectomy rates. Cancer Epidemiol Biomarkers Prev 24(7):1094–1100

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chumlea WC et al (2003) Age at Menarche And Racial Comparisons In US girls. Pediatrics 111(1):110–113

    Article  PubMed  Google Scholar 

  37. Flegal KM, Carroll MD, Kit BK, Ogden CL (2012) Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. JAMA 307(5):491–497

    Article  PubMed  Google Scholar 

  38. Ogden CL, Carroll MD, Kit BK, Flegal KM (2014) Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA 311(8):806–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bandera E et al (2016) Obesity, weight gain, and ovarian cancer risk in African American women. Int J Cancer 139(3):593–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cramer DW, Vitonis AF, Terry KL, Welch WR, Titus LJ (2015) The association between talc use and ovarian cancer: a retrospective case-control study in two US states. Epidemiology 27(3):334

    Article  Google Scholar 

  41. Schildkraut JM et al (2016) Association between body powder use and ovarian cancer: the African American Cancer Epidemiology Study (AACES). Cancer Epidemiol Biomarkers Prev 25(10):1411–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martin T, Osterman M (2013) Preterm births—United States, 2006 and 2010. Morb Mortal Wkly Rep 62(3):136–138

    Google Scholar 

  43. Allen JA, Li R, Scanlon KS, Perrine CG, Chen J, Odom E, Black C (2013) Progress in increasing breastfeeding and reducing racial/ethnic differences—United States, 2000–2008 births. MMWR Morb Mortal Wkly Rep 62(5):77

    PubMed Central  Google Scholar 

  44. Daniels K, Mosher W, Jones J (2013) Contraceptive methods women have ever used: United States, 1982-2010. National Health Statistics reports, vol 62. National Health Statistics, Hyattsville

    Google Scholar 

  45. Setiawan VW et al (2012) Use of nonsteroidal anti-inflammatory drugs and risk of ovarian and endometrial cancer: the Multiethnic Cohort. Cancer Epidemiol Biomarkers Prev 21(9):1441–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peres LC et al (2016) Analgesic medication use and risk of epithelial ovarian cancer in African American women. Br J Cancer 114(7):819–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Powell LH et al (2005) Ethnic differences in past hysterectomy for benign conditions. Womens Health Issues 15(4):179–186

    Article  PubMed  Google Scholar 

  48. Missmer SA, Hankinson SE, Spiegelman D, Barbieri RL, Marshall LM, Hunter DJ (2004) Incidence of laparoscopically confirmed endometriosis by demographic, anthropometric, and lifestyle factors. Am J Epidemiol 160(8):784–796

    Article  PubMed  Google Scholar 

  49. Olsen CM et al (2013) Obesity and risk of ovarian cancer subtypes: evidence from the Ovarian Cancer Association Consortium. Endocr Relat Cancer 20(2):251–262

    Article  PubMed  Google Scholar 

  50. Peres LC et al (2018) Racial/ethnic differences in the epidemiology of ovarian cancer: a pooled analysis of 12 case-control studies. Int J Epidemiol 47(2):460–472

    Article  PubMed  Google Scholar 

  51. Jemal A et al (2017) Annual report to the nation on the status of cancer, 1975–2014, featuring survival. J Natl Cancer Inst 109(9):djx030

    Article  PubMed Central  Google Scholar 

  52. Torre LA et al (2018) Ovarian cancer statistics, 2018. CA Cancer J Clin 68(4):284–296

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bandera EV, Lee VS, Rodriguez-Rodriguez L, Powell CB, Kushi LH (2016) Racial/ethnic disparities in ovarian cancer treatment and survival. Clin Cancer Res 22(23):5909–5914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bristow RE, Ueda S, Gerardi MA, Ajiboye OB, Ibeanu OA (2011) Analysis of racial disparities in stage IIIC epithelial ovarian cancer care and outcomes in a tertiary gynecologic oncology referral center. Gynecol Oncol 122(2):319–323

    Article  PubMed  Google Scholar 

  55. Schildkraut JM, Moorman PG, Halabi S, Calingaert B, Marks JR, Berchuck A (2006) Analgesic drug use and risk of ovarian cancer. Epidemiology 17(1):104–107

    Article  PubMed  Google Scholar 

  56. Wu AH, Pearce CL, Tseng C-C, Templeman C, Pike MC (2009) Markers of inflammation and risk of ovarian cancer in Los Angeles County. Int J Cancer 124(6):1409–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schildkraut JM et al (2014) A multi-center population-based case-control study of ovarian cancer in African-American women: the African American Cancer Epidemiology Study (AACES). BMC Cancer 14(1):688

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kim S, Dolecek TA, Davis FG (2010) Racial differences in stage at diagnosis and survival from epithelial ovarian cancer: a fundamental cause of disease approach. Soc Sci Med 71(2):274–281

    Article  PubMed  PubMed Central  Google Scholar 

  59. Peterson CE et al (2015) The effect of neighborhood disadvantage on the racial disparity in ovarian cancer-specific survival in a large hospital-based study in cook county, illinois. Front Public Health 3:8

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kolonel LN et al (2000) A multiethnic cohort in Hawaii and Los Angeles: baseline characteristics. Am J Epidemiol 151(4):346–357

    Article  CAS  PubMed  Google Scholar 

  61. Bethea TN, Palmer JR, Adams-Campbell LL, Rosenberg L (2017) A prospective study of reproductive factors and exogenous hormone use in relation to ovarian cancer risk among Black women. Cancer Causes Control 28(5):385–391

    Article  PubMed  Google Scholar 

  62. Hays J et al (2003) The women’s health initiative recruitment methods and results. Ann Epidemiol 13(9):S18–S77

    Article  PubMed  Google Scholar 

  63. Signorello LB et al (2005) Southern community cohort study: establishing a cohort to investigate health disparities. J Natl Med Assoc 97(7):972–979

    PubMed  PubMed Central  Google Scholar 

  64. Curb JD et al (2003) Outcomes ascertainment and adjudication methods in the women’s health initiative. Ann Epidemiol 13:122–128

    Article  Google Scholar 

  65. Kurman RJ, Carcangiu ML, Herrington CS, Young RH (2014) WHO classification of tumours of female reproductive organs, 4th edn. IARC, Lyon

    Google Scholar 

  66. Fritz A et al (eds) (2000) International classification of diseases for oncology, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  67. Clarke BA, Gilks B (2011) Ovarian carcinoma: recent developments in classification of tumour histological subtype. Can J Pathol 3:33–42

    Google Scholar 

  68. LexisNexis® Accurint®. http://www.accurint.com/. Accessed 17 May 2019

  69. Paskett ED et al (2018) The women’s health initiative (WHI) life and longevity after cancer (LILAC) study: description and baseline characteristics of participants. Cancer Epidemiol Biomarkers Prev 27(2):125–137

    Article  PubMed  PubMed Central  Google Scholar 

  70. Park HK, Ruterbusch JJ, Cote ML (2017) Recent trends in ovarian cancer incidence and relative survival in the united states by race/ethnicity and histologic subtypes. Cancer Epidemiol Biomarkers Prev 26(10):1511–1518

    Article  PubMed  PubMed Central  Google Scholar 

  71. Krishnan S, Cozier YC, Rosenberg L, Palmer JR (2010) Socioeconomic status and incidence of type 2 diabetes: results from the Black Women’s Health Study. Am J Epidemiol 171(5):564–570

    Article  PubMed  PubMed Central  Google Scholar 

  72. NIH (2015) “Project information: 3R01CA154644-05S1”, NIH Research Portfolio Online Reporting Tools (RePort). NIH, Bethesda

    Google Scholar 

  73. Peterson CE et al (2014) The association between neighborhood socioeconomic status and ovarian cancer tumor characteristics. Cancer Causes Control 25(5):633–637

    Article  PubMed  Google Scholar 

  74. Sonderman JS, Mumma MT, Cohen SS, Cope EL, Blot WJ, Signorello LB (2012) A multi-stage approach to maximizing geocoding success in a large population-based cohort study through automated and interactive processes. Geospat. Health 6(2):273–284

    Article  PubMed  PubMed Central  Google Scholar 

  75. Protani MM, Nagle CM, Webb PM (2012) Obesity and ovarian cancer survival: a systematic review and meta-analysis. Cancer Prev Res 5(7):901–910

    Article  Google Scholar 

  76. Nagle CM et al (2015) Obesity and survival among women with ovarian cancer: results from the Ovarian Cancer Association Consortium. Br J Cancer 113(5):817–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Minlikeeva AN et al (2017) History of hypertension, heart disease, and diabetes and ovarian cancer patient survival: evidence from the ovarian cancer association consortium. Cancer Causes Control 28(5):469–486

    Article  PubMed  PubMed Central  Google Scholar 

  78. Minlikeeva AN et al (2019) Joint exposure to smoking, excessive weight, and physical inactivity and survival of ovarian cancer patients, evidence from the Ovarian Cancer Association Consortium. Cancer Causes Control 30(5):537–547

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic Press, Orlando

    Google Scholar 

  80. Mansournia MA, Hernán MA, Greenland S (2013) Matched designs and causal diagrams. Int J Epidemiol 42(3):860–869

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bartlett JW, Seaman SR, White IR, Carpenter JR (2015) Multiple imputation of covariates by fully conditional specification: accommodating the substantive model. Stat Methods Med Res 24(4):462–487

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bartlett J, Morris T (2015) Multiple imputation of covariates by substantive-model compatible fully conditional specification. Stata J 15:437–456

    Article  Google Scholar 

  83. Liu Y, De A (2015) Multiple imputation by fully conditional specification for dealing with missing data in a large epidemiologic study. Int J Stat Med Res 4(3):287–295

    Article  PubMed  PubMed Central  Google Scholar 

  84. He Y, Zaslavsky AM, Landrum MB, Harrington DP, Catalano P (2010) Multiple imputation in a large-scale complex survey: a practical guide. Stat Methods Med Res 19(6):653–670

    Article  CAS  PubMed  Google Scholar 

  85. White IR, Royston P (2009) Imputing missing covariate values for the Cox model. Stat Med 28(15):1982–1998

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jolani S, Debray TPA, Koffijberg H, van Buuren S, Moons KGM (2015) Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using MICE. Stat Med 34(11):1841–1863

    Article  PubMed  Google Scholar 

  87. Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558

    Article  PubMed  Google Scholar 

  88. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    Article  CAS  PubMed  Google Scholar 

  89. Chang B-H, Hoaglin DC (2017) Meta-analysis of odds ratios: current good practices. Med Care 55(4):328–335

    Article  PubMed  PubMed Central  Google Scholar 

  90. Thompson SG, Turner RM, Warn DE (2001) Multilevel models for meta-analysis, and their application to absolute risk differences. Stat Methods Med Res 10(6):375–392

    Article  CAS  PubMed  Google Scholar 

  91. McNeish D (2016) Estimation methods for mixed logistic models with few clusters. Multivar Behav Res 51(6):790–804

    Google Scholar 

  92. Bruzzi P, Green SB, Byar DP, Brinton LA, Schairer C (1985) Estimating the population attributable risk for multiple risk factors using case-control data. Am J Epidemiol 122(5):904–914

    Article  CAS  PubMed  Google Scholar 

  93. Dottino JA, Cliby WA, Myers ER, Bristow RE, Havrilesky LJ (2015) Improving NCCN guideline-adherent care for ovarian cancer: value of an intervention. Gynecol Oncol 138(3):694–699

    Article  PubMed  Google Scholar 

  94. Havrilesky LJ, Sanders GD, Kulasingam S, Myers ER (2008) Reducing ovarian cancer mortality through screening: is it possible, and can we afford it? Gynecol Oncol 111(2):179–187

    Article  PubMed  Google Scholar 

  95. Havrilesky LJ et al (2011) Development of an ovarian cancer screening decision model that incorporates disease heterogeneity. Cancer 117(3):545–553

    Article  PubMed  Google Scholar 

  96. Havrilesky LJ et al (2013) Oral contraceptive use for the primary prevention of ovarian cancer. Evid Rep Technol Assess 212:1–514

    Google Scholar 

  97. Gierisch JM et al (2013) Oral contraceptive use and risk of breast, cervical, colorectal, and endometrial cancers: a systematic review. Cancer Epidemiol Biomarkers Prev 22(11):1931–1943

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the WHI investigators and staff for their dedication and the study participants for making the program possible. A full listing of WHI investigators can be found at: http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Long%20List.pdf. The authors would also like to thank Alpana Kaushiva for harmonizing the data from the Cook County Case–Control Study. Additionally, the authors sincerely thank the state cancer registries that contributed to the OCWAA studies: Arizona, Arkansas, California, Colorado, Connecticut, Delaware, District of Columbia, Florida, Georgia, Hawaii, Illinois, Indiana, Kentucky, Louisiana, Maryland, Massachusetts, Michigan, Mississippi, New Jersey, New York, North Carolina, Oklahoma, Pennsylvania, South Carolina, Tennessee, Texas, Virginia, and West Virginia.

Funding

This project is supported by grant R01-CA207260 (L.A. Rosenberg, J.M. Schildkraut) from the National Cancer Institute (NCI), National Institutes of Health (NIH), U.S. Department of Health and Human Services. In addition, AACES was funded by NCI (R01-CA142081; J.M. Schildkraut); BWHS is funded by NIH (R01-CA058420 and UM1CA164974); CCCCS was funded by NIH/NCI (R01-CA61093; K.A. Rosenblatt); LACOCS was funded by NCI (R01-CA17054 [Pike], R01-CA58598 [Goodman, A. Wu] and Cancer Center Core Grant P30-CA014089 [Henderson, A. Wu]) and the California Cancer Research Program (2II0200 [A. Wu]); and NCOCS was funded by NCI (R01-CA076016; J.M. Schildkraut). SCCS is supported by the NCI (Grants R01-CA092447 and U01-CA202979; W.J. Blot and W. Zheng), and data collection is performed by the Survey and Biospecimen Shared Resource, which is supported by the Vanderbilt-Ingram Cancer Center (P30-CA68485). In addition, support to bring SCCS to OCWAA was provided by a Pilot Award (PI: Beeghly-Fadiel) from the NIH Precision Medicine and Health Disparities Collaborative (NIMHD/NHGRI U54-MD010722). The WHI program is funded by the National Heart, Lung, and Blood Institute, NIH through contracts HHSN268201600018C, HHSN268201600001C, HHSN268201600002C, HHSN268201600003C, and HHSN268201600004C. Additionally, WHI, “The women’s health Initiative Cancer Survivor Cohort,” is funded by NCI (5UM1CA173642-05; G.L. Anderson).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joellen M. Schildkraut.

Ethics declarations

Conflict of interest

Patricia Moorman has received compensation for work related to litigation in regard to talc and ovarian cancer.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schildkraut, J.M., Peres, L.C., Bethea, T.N. et al. Ovarian Cancer in Women of African Ancestry (OCWAA) consortium: a resource of harmonized data from eight epidemiologic studies of African American and white women. Cancer Causes Control 30, 967–978 (2019). https://doi.org/10.1007/s10552-019-01199-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-019-01199-7

Keywords

Navigation