Skip to main content

Advertisement

Log in

Multi-omics portrait of ductal carcinoma in situ in young women

  • Original Laboratory Investigation
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background

Young patients with breast ductal carcinoma in situ (DCIS) often face a poorer prognosis. The genomic intricacies in young-onset DCIS, however, remain underexplored.

Methods

To address this gap, we undertook a comprehensive study encompassing exome, transcriptome, and vmethylome analyses. Our investigation included 20 DCIS samples (including 15 young-onset DCIS) and paired samples of normal breast tissue and blood.

Results

Through RNA sequencing, we identified two distinct DCIS subgroups: “immune hot” and “immune cold”. The “immune hot” subgroup was characterized by increased infiltration of lymphocytes and macrophages, elevated expression of PDCD1 and CTLA4, and reduced GATA3 expression. This group also exhibited active immunerelated transcriptional regulators. Mutational analysis revealed alterations in TP53 (38%), GATA3 (25%), and TTN (19%), with two cases showing mutations in APC, ERBB2, and SMARCC1. Common genomic alterations, irrespective of immune status, included gains in copy numbers at 1q, 8q, 17q, and 20q, and losses at 11q, 17p, and 22q. Signature analysis highlighted the predominance of signatures 2 and 1, with “immune cold” samples showing a significant presence of signature 8. Our methylome study on 13 DCIS samples identified 328 hyperdifferentially methylated regions (DMRs) and 521 hypo-DMRs, with “immune cold” cases generally showing lower levels of methylation.

Conclusion

In summary, the molecular characteristics of young-onset DCIS share similarities with invasive breast cancer (IBC), potentially indicating a poor prognosis. Understanding these characteristics, especially the immune microenvironment of DCIS, could be pivotal in identifying new therapeutic targets and preventive strategies for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study can be available from the corresponding author on reasonable request, following ethics committee approval and a data transfer agreement. Please contact the corresponding author, S.W. (email address: wangshs@sysucc.org.cn) to request access to the data.

References

  1. Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N et al (2022) Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl) 135(5):584–590. https://doi.org/10.1097/cm9.0000000000002108

    Article  PubMed  Google Scholar 

  2. Ryser MD, Hendrix LH, Worni M, Liu Y, Hyslop T, Hwang ES (2019) Incidence of ductal carcinoma in situ in the United States, 2000–2014. Cancer Epidemiol Biomarkers Prev 28(8):1316–1323. https://doi.org/10.1158/1055-9965.Epi-18-1262

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bluekens AM, Holland R, Karssemeijer N, Broeders MJ, den Heeten GJ (2012) Comparison of digital screening mammography and screen-film mammography in the early detection of clinically relevant cancers: a multicenter study. Radiology 265(3):707–714. https://doi.org/10.1148/radiol.12111461

    Article  PubMed  Google Scholar 

  4. Sanders ME, Schuyler PA, Dupont WD, Page DL (2005) The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up. Cancer 103(12):2481–2484. https://doi.org/10.1002/cncr.21069

    Article  PubMed  Google Scholar 

  5. Page DL, Dupont WD, Rogers LW, Landenberger M (1982) Intraductal carcinoma of the breast: follow-up after biopsy only. Cancer 49(4):751–758

    Article  CAS  PubMed  Google Scholar 

  6. Maxwell AJ, Clements K, Hilton B, Dodwell DJ, Evans A, Kearins O, Pinder SE, Thomas J, Wallis MG, Thompson AM (2018) Risk factors for the development of invasive cancer in unresected ductal carcinoma in situ. Eur J Surg Oncol 44(4):429–435. https://doi.org/10.1016/j.ejso.2017.12.007

    Article  PubMed  Google Scholar 

  7. Vicini FA, Shaitelman S, Wilkinson JB, Shah C, Ye H, Kestin LL, Goldstein NS, Chen PY, Martinez AA (2013) Long-term impact of young age at diagnosis on treatment outcome and patterns of failure in patients with ductal carcinoma in situ treated with breast-conserving therapy. Breast J 19(4):365–373. https://doi.org/10.1111/tbj.12127

    Article  PubMed  Google Scholar 

  8. Mamtani A, Nakhlis F, Downs-Canner S, Zabor EC, Morrow M, King TA, Van Zee KJ (2019) Impact of age on locoregional and distant recurrence after mastectomy for ductal carcinoma in situ with or without microinvasion. Ann Surg Oncol 26(13):4264–4271. https://doi.org/10.1245/s10434-019-07693-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Narod SA, Iqbal J, Giannakeas V, Sopik V, Sun P (2015) Breast cancer mortality after a diagnosis of ductal carcinoma in situ. JAMA Oncol 1(7):888–896. https://doi.org/10.1001/jamaoncol.2015.2510

    Article  PubMed  Google Scholar 

  10. Nagasawa S, Kuze Y, Maeda I, Kojima Y, Motoyoshi A, Onishi T, Iwatani T, Yokoe T, Koike J, Chosokabe M et al (2021) Genomic profiling reveals heterogeneous populations of ductal carcinoma in situ of the breast. Commun Biol 4(1):438. https://doi.org/10.1038/s42003-021-01959-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pang JB, Savas P, Fellowes AP, Mir Arnau G, Kader T, Vedururu R, Hewitt C, Takano EA, Byrne DJ, Choong DY et al (2017) Breast ductal carcinoma in situ carry mutational driver events representative of invasive breast cancer. Mod Pathol 30(7):952–963. https://doi.org/10.1038/modpathol.2017.21

    Article  CAS  PubMed  Google Scholar 

  12. Abba MC, Gong T, Lu Y, Lee J, Zhong Y, Lacunza E, Butti M, Takata Y, Gaddis S, Shen J et al (2015) A molecular portrait of high-grade ductal carcinoma in situ. Cancer Res 75(18):3980–3990. https://doi.org/10.1158/0008-5472.Can-15-0506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin CY, Vennam S, Purington N, Lin E, Varma S, Han S, Desa M, Seto T, Wang NJ, Stehr H et al (2019) Genomic landscape of ductal carcinoma in situ and association with progression. Breast Cancer Res Treat 178(2):307–316. https://doi.org/10.1007/s10549-019-05401-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vincent-Salomon A, Lucchesi C, Gruel N, Raynal V, Pierron G, Goudefroye R, Reyal F, Radvanyi F, Salmon R, Thiery JP et al (2008) Integrated genomic and transcriptomic analysis of ductal carcinoma in situ of the breast. Clin Cancer Res 14(7):1956–1965. https://doi.org/10.1158/1078-0432.Ccr-07-1465

    Article  CAS  PubMed  Google Scholar 

  15. Fleischer T, Frigessi A, Johnson KC, Edvardsen H, Touleimat N, Klajic J, Riis ML, Haakensen VD, Wärnberg F, Naume B et al (2014) Genome-wide DNA methylation profiles in progression to in situ and invasive carcinoma of the breast with impact on gene transcription and prognosis. Genome Biol 15(8):435. https://doi.org/10.1186/preaccept-2333349012841587

    Article  PubMed  PubMed Central  Google Scholar 

  16. Johnson KC, Koestler DC, Fleischer T, Chen P, Jenson EG, Marotti JD, Onega T, Kristensen VN, Christensen BC (2015) DNA methylation in ductal carcinoma in situ related with future development of invasive breast cancer. Clin Epigenetics 7(1):75. https://doi.org/10.1186/s13148-015-0094-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH (2016) Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol 34:539–573. https://doi.org/10.1146/annurev-immunol-032414-112049

    Article  CAS  PubMed  Google Scholar 

  18. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale AL et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421. https://doi.org/10.1038/nature12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rubin AF, Green P (2009) Mutation patterns in cancer genomes. Proc Natl Acad Sci U S A 106(51):21766–21770. https://doi.org/10.1073/pnas.0912499106

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486(7403):400–404. https://doi.org/10.1038/nature11017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61-70. doi:https://doi.org/10.1038/nature11412

  22. Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, Carbuccia N, Soria JC, Dien AT, Adnani Y, Kamal M et al (2019) Genomic characterization of metastatic breast cancers. Nature 569(7757):560–564. https://doi.org/10.1038/s41586-019-1056-z

    Article  CAS  PubMed  Google Scholar 

  23. Law EK, Sieuwerts AM, LaPara K, Leonard B, Starrett GJ, Molan AM, Temiz NA, Vogel RI, Meijer-van Gelder ME, Sweep FC et al (2016) The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer. Sci Adv 2(10):e1601737. https://doi.org/10.1126/sciadv.1601737

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sannigrahi MK, Srinivas S, Rakshit S (2018) The prospects of cadherin-23 as a mediator of homophilic cell–cell adhesion. Adv Exp Med Biol 1112:99–105. https://doi.org/10.1007/978-981-13-3065-0_8

    Article  CAS  PubMed  Google Scholar 

  25. Swann JB, Smyth MJ (2007) Immune surveillance of tumors. J Clin Invest 117(5):1137–1146. https://doi.org/10.1172/jci31405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim M, Chung YR, Kim HJ, Woo JW, Ahn S, Park SY (2020) Immune microenvironment in ductal carcinoma in situ: a comparison with invasive carcinoma of the breast. Breast Cancer Res 22(1):32. https://doi.org/10.1186/s13058-020-01267-w

    Article  PubMed  PubMed Central  Google Scholar 

  27. Toss MS, Abidi A, Lesche D, Joseph C, Mahale S, Saunders H, Kader T, Miligy IM, Green AR, Gorringe KL et al (2020) The prognostic significance of immune microenvironment in breast ductal carcinoma in situ. Br J Cancer 122(10):1496–1506. https://doi.org/10.1038/s41416-020-0797-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Toss MS, Miligy I, Al-Kawaz A, Alsleem M, Khout H, Rida PC, Aneja R, Green AR, Ellis IO, Rakha EA (2018) Prognostic significance of tumor-infiltrating lymphocytes in ductal carcinoma in situ of the breast. Mod Pathol 31(8):1226–1236. https://doi.org/10.1038/s41379-018-0040-8

    Article  PubMed  Google Scholar 

  29. Thompson E, Taube JM, Elwood H, Sharma R, Meeker A, Warzecha HN, Argani P, Cimino-Mathews A, Emens LA (2016) The immune microenvironment of breast ductal carcinoma in situ. Mod Pathol 29(3):249–258. https://doi.org/10.1038/modpathol.2015.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McCleskey BC, Penedo TL, Zhang K, Hameed O, Siegal GP, Wei S (2015) GATA3 expression in advanced breast cancer: prognostic value and organ-specific relapse. Am J Clin Pathol 144(5):756–763. https://doi.org/10.1309/ajcp5mmr1fjvvtpk

    Article  CAS  PubMed  Google Scholar 

  31. Van Coillie S, Wiernicki B, Xu J (2020) Molecular and cellular functions of CTLA-4. Adv Exp Med Biol 1248:7–32. https://doi.org/10.1007/978-981-15-3266-5_2

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Xie X, Zhu J, Qi S, Xie J (2021) Comprehensive analysis identifies IFI16 as a novel signature associated with overall survival and immune infiltration of skin cutaneous melanoma. Cancer Cell Int 21(1):694. https://doi.org/10.1186/s12935-021-02409-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ka NL, Lim GY, Kim SS, Hwang S, Han J, Lee YH, Lee MO (2022) Type I IFN stimulates IFI16-mediated aromatase expression in adipocytes that promotes E(2)-dependent growth of ER-positive breast cancer. Cell Mol Life Sci 79(6):306. https://doi.org/10.1007/s00018-022-04333-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Khan MI, Nur SM, Abdulaal WH (2022) A study on DNA methylation modifying natural compounds identified EGCG for induction of IFI16 gene expression related to the innate immune response in cancer cells. Oncol Lett 24(1):218. https://doi.org/10.3892/ol.2022.13339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Karasawa T, Kawashima A, Usui F, Kimura H, Shirasuna K, Inoue Y, Komada T, Kobayashi M, Mizushina Y, Sagara J et al (2015) Oligomerized CARD16 promotes caspase-1 assembly and IL-1β processing. FEBS Open Bio 5:348–356. https://doi.org/10.1016/j.fob.2015.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zardavas D, Te Marvelde L, Milne RL, Fumagalli D, Fountzilas G, Kotoula V, Razis E, Papaxoinis G, Joensuu H, Moynahan ME et al (2018) Tumor PIK3CA genotype and prognosis in early-stage breast cancer: a pooled analysis of individual patient data. J Clin Oncol 36(10):981–990. https://doi.org/10.1200/jco.2017.74.8301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Guangdong Provincial Key Laboratory of Human Disease Genomics (2020B1212070028). This work was supported by the China National GeneBank (CNGB).

Funding

This work was supported by the National Natural Science Foundation of China (82372590, 82303007), Natural Science Foundation of Guangdong Province (2023A1515030092, 2020A1515010105), Guangdong Basic and Applied Basic Research Foundation (2022A1515111202), Fostering Program for NSFC Young Applicants (Tulip Talent Training Program) of Sun Yat-sen University Cancer Center (2023yfd10).

Author information

Authors and Affiliations

Authors

Contributions

Concept and design: WZ, SW, KS. Acquisition, analysis, or interpretation of data: RH, BC, DC. Drafting of the manuscript: DC. Critical revision of the manuscript for important intellectual content: RH. Statistical analysis: BC. Administrative, technical, or material support: WW, TL, DL. Supervision: WZ, SW, KS.

Corresponding authors

Correspondence to Weimin Zhang, Shusen Wang or Kang Shao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The study was approved by the ethical committee of Sun Yat-sen University Cancer Center and waived the requirement for informed consent due to the retrospective nature of this study.

Consent to participant

The study waived the requirement for informed consent due to the retrospective nature of this study.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 391.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, R., Cao, B., Chen, D. et al. Multi-omics portrait of ductal carcinoma in situ in young women. Breast Cancer Res Treat (2024). https://doi.org/10.1007/s10549-024-07254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10549-024-07254-5

Keywords

Navigation