Skip to main content

Advertisement

Log in

Co-occurrence and metabolic biomarkers of sensory and motor subtypes of peripheral neuropathy from paclitaxel

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Chemotherapy-induced peripheral neuropathy (CIPN) is the major treatment-limiting toxicity of paclitaxel, which predominantly presents as sensory symptoms, with motor symptoms in some patients. Differentiating CIPN into subtypes has been recommended to direct CIPN research. The objective of this study was to investigate whether sensory and motor CIPN are distinct subtypes with different predictive biomarkers in patients with breast cancer receiving paclitaxel.

Methods

Data were from a prospective cohort of 60 patients with breast cancer receiving up to 12 weekly infusions of 80 mg/m2 paclitaxel (NCT02338115). European Organisation for Research and Treatment of Cancer Quality of Life questionnaire CIPN20 was used to evaluate CIPN. Clusters of the time course of sensory (CIPNS), motor (CIPNM), and the difference between sensory and motor (CIPNS–CIPNM) were identified using k-means clustering on principal component scores. Predictive metabolomic biomarkers of maximum CIPNS and CIPNM were investigated using linear regressions adjusted for baseline CIPN, paclitaxel pharmacokinetics, and body mass index.

Results

More sensory than motor CIPN was found (CIPNS change: mean = 10.8, ranged [−3.3, 52.1]; CIPNM change: mean = 3.5, range: [−7.5, 35.0]). Three groups were identified with No CIPN, Mixed CIPN, and Sensory-dominant CIPN (maximum CIPNS: mean = 12.7 vs. 40.9 vs. 74.3, p < 0.001; maximum CIPNM: mean = 5.4 vs. 25.5 vs. 36.1, p < 0.001; average CIPNS–CIPNM: mean = 2.8 vs. 5.8 vs. 24.9, p < 0.001). Biomarkers of motor CIPN were similar to previously identified biomarkers of sensory CIPN, including lower serum histidine (p = 0.029).

Conclusion

Our findings suggest that sensory and motor CIPN co-occur and may not have differentiating metabolic biomarkers. These findings need to be validated in larger cohorts of patients treated with paclitaxel and other neurotoxic agents to determine the optimal approach to predict, prevent, and treat CIPN and improve patients’ outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are not publicly available due to patient privacy requirements but are available from the corresponding author on reasonable request.

References

  1. Hershman DL, Unger JM, Crew KD, Till C, Greenlee H, Minasian LM, Moinpour CM, Lew DL, Fehrenbacher L, Wade JL 3rd et al (2018) Two-year trends of taxane-induced neuropathy in women enrolled in a randomized trial of acetyl-L-carnitine (SWOG S0715). J Natl Cancer Inst 110(6):669–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mustafa Ali M, Moeller M, Rybicki L, Moore HCF (2017) Long-term peripheral neuropathy symptoms in breast cancer survivors. Breast Cancer Res Treat 166(2):519–526

    Article  PubMed  Google Scholar 

  3. Simon NB, Danso MA, Alberico TA, Basch E, Bennett AV (2017) The prevalence and pattern of chemotherapy-induced peripheral neuropathy among women with breast cancer receiving care in a large community oncology practice. Qual Life Res 26(10):2763–2772

    Article  PubMed  Google Scholar 

  4. Bao T, Basal C, Seluzicki C, Li SQ, Seidman AD, Mao JJ (2016) Long-term chemotherapy-induced peripheral neuropathy among breast cancer survivors: prevalence, risk factors, and fall risk. Breast Cancer Res Treat 159(2):327–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Osmani K, Vignes S, Aissi M, Wade F, Milani P, Lévy BI, Kubis N (2012) Taxane-induced peripheral neuropathy has good long-term prognosis: a 1- to 13-year evaluation. J Neurol 259(9):1936–1943

    Article  PubMed  Google Scholar 

  6. Kuroi K, Shimozuma K (2004) Neurotoxicity of taxanes: symptoms and quality of life assessment. Breast cancer (Tokyo, Japan) 11(1):92–99

    Article  Google Scholar 

  7. Loprinzi CL, Lacchetti C, Bleeker J, Cavaletti G, Chauhan C, Hertz DL, Kelley MR, Lavino A, Lustberg MB, Paice JA et al (2020) Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO guideline update. J Clin Oncol 38(28):3325–3348

    Article  PubMed  Google Scholar 

  8. Miltenburg NC, Boogerd W (2014) Chemotherapy-induced neuropathy: a comprehensive survey. Cancer Treat Rev 40(7):872–882

    Article  CAS  PubMed  Google Scholar 

  9. Quasthoff S, Hartung HP (2002) Chemotherapy-induced peripheral neuropathy. J Neurol 249(1):9–17

    Article  CAS  PubMed  Google Scholar 

  10. Freilich RJ, Balmaceda C, Seidman AD, Rubin M, DeAngelis LM (1996) Motor neuropathy due to docetaxel and paclitaxel. Neurology 47(1):115–118

    Article  CAS  PubMed  Google Scholar 

  11. Boyette-Davis JA, Cata JP, Driver LC, Novy DM, Bruel BM, Mooring DL, Wendelschafer-Crabb G, Kennedy WR, Dougherty PM (2013) Persistent chemoneuropathy in patients receiving the plant alkaloids paclitaxel and vincristine. Cancer Chemother Pharmacol 71(3):619–626

    Article  CAS  PubMed  Google Scholar 

  12. Winters-Stone KM, Horak F, Jacobs PG, Trubowitz P, Dieckmann NF, Stoyles S, Faithfull S (2017) Falls, functioning, and disability among women with persistent symptoms of chemotherapy-induced peripheral neuropathy. J Clin Oncol 35(23):2604–2612

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kolb NA, Smith AG, Singleton JR, Beck SL, Stoddard GJ, Brown S, Mooney K (2016) The association of chemotherapy-induced peripheral neuropathy symptoms and the risk of falling. JAMA Neurol 73(7):860–866

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dorsey SG, Kleckner IR, Barton D, Mustian K, O’Mara A, St Germain D, Cavaletti G, Danhauer SC, Hershman DL, Hohmann AG et al (2019) The National Cancer Institute Clinical Trials planning meeting for prevention and treatment of chemotherapy-induced peripheral neuropathy. J Natl Cancer Inst 111(6):531–537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Themistocleous AC, Crombez G, Baskozos G, Bennett DL (2018) Using stratified medicine to understand, diagnose, and treat neuropathic pain. Pain 159(Suppl 1):S31–S42

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gewandter JS, Brell J, Cavaletti G, Dougherty PM, Evans S, Howie L, McDermott MP, O’Mara A, Smith AG, Dastros-Pitei D et al (2018) Trial designs for chemotherapy-induced peripheral neuropathy prevention: ACTTION recommendations. Neurology 91(9):403–413

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chan A, Hertz DL, Morales M, Adams EJ, Gordon S, Tan CJ, Staff NP, Kamath J, Oh J, Shinde S et al (2019) Biological predictors of chemotherapy-induced peripheral neuropathy (CIPN): MASCC neurological complications working group overview. Supportive Care Cancer 27(10):3729–3737

    Article  Google Scholar 

  18. Wang M, Cheng HL, Lopez V, Sundar R, Yorke J, Molassiotis A (2019) Redefining chemotherapy-induced peripheral neuropathy through symptom cluster analysis and patient-reported outcome data over time. BMC Cancer 19(1):1151

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hertz DL, Kidwell KM, Vangipuram K, Li F, Pai MP, Burness M, Griggs JJ, Schott AF, Van Poznak C, Hayes DF et al (2018) Paclitaxel plasma concentration after the first infusion predicts treatment-limiting peripheral neuropathy. Clin Cancer Res 24(15):3602–3610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chua KC, Xiong C, Ho C, Mushiroda T, Jiang C, Mulkey F, Lai D, Schneider BP, Rashkin SR, Witte JS et al (2020) Genomewide meta-analysis validates a role for S1PR1 in microtubule targeting agent-induced sensory peripheral neuropathy. Clin Pharmacol Ther 108(3):625–634

    Article  CAS  PubMed  Google Scholar 

  21. Komatsu M, Wheeler HE, Chung S, Low SK, Wing C, Delaney SM, Gorsic LK, Takahashi A, Kubo M, Kroetz DL et al (2015) Pharmacoethnicity in paclitaxel-induced sensory peripheral neuropathy. Clinical Cancer Res 21(19):4337–4346

    Article  CAS  Google Scholar 

  22. Abraham JE, Guo Q, Dorling L, Tyrer J, Ingle S, Hardy R, Vallier A-L, Hiller L, Burns R, Jones L et al (2014) Replication of genetic polymorphisms reported to be associated with Taxane-related sensory neuropathy in patients with early breast cancer treated with paclitaxel. Clin Cancer Res 20(9):2466–2475

    Article  CAS  PubMed  Google Scholar 

  23. Wheeler HE, Gamazon ER, Wing C, Njiaju UO, Njoku C, Baldwin RM, Owzar K, Jiang C, Watson D, Shterev I et al (2013) Integration of cell line and clinical trial genome-wide analyses supports a polygenic architecture of Paclitaxel-induced sensory peripheral neuropathy. Clinical Cancer Res 19(2):491–499

    Article  CAS  Google Scholar 

  24. Leandro-Garcia LJ, Inglada-Perez L, Pita G, Hjerpe E, Leskela S, Jara C, Mielgo X, Gonzalez-Neira A, Robledo M, Avall-Lundqvist E et al (2013) Genome-wide association study identifies ephrin type A receptors implicated in paclitaxel induced peripheral sensory neuropathy. J Med Genet 50(9):599–605

    Article  CAS  PubMed  Google Scholar 

  25. Baldwin RM, Owzar K, Zembutsu H, Chhibber A, Kubo M, Jiang C, Watson D, Eclov RJ, Mefford J, McLeod HL et al (2012) A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clinical Cancer Res 18(18):5099–5109

    Article  CAS  Google Scholar 

  26. Chen EI, Crew KD, Trivedi M, Awad D, Maurer M, Kalinsky K, Koller A, Patel P, Kim Kim J, Hershman DL (2015) Identifying predictors of Taxane-induced peripheral neuropathy using mass spectrometry-based proteomics technology. PLoS ONE 10(12):e0145816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sun Y, Kim JH, Vangipuram K, Hayes DF, Smith EML, Yeomans L, Henry NL, Stringer KA, Hertz DL (2018) Pharmacometabolomics reveals a role for histidine, phenylalanine, and threonine in the development of paclitaxel-induced peripheral neuropathy. Breast Cancer Res Treat 171(3):657–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jennaro TS, Fang F, Kidwell KM, Smith EML, Vangipuram K, Burness ML, Griggs JJ, Van Poznak C, Hayes DF, Henry NL et al (2020) Vitamin D deficiency increases severity of paclitaxel-induced peripheral neuropathy. Breast Cancer Res Treat 180(3):707–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kramer R, Bielawski J, Kistner-Griffin E, Othman A, Alecu I, Ernst D, Kornhauser D, Hornemann T, Spassieva S (2015) Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. Faseb j 29(11):4461–4472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cavaletti G, Cornblath DR, Merkies ISJ, Postma TJ, Rossi E, Frigeni B, Alberti P, Bruna J, Velasco R, Argyriou AA et al (2013) The chemotherapy-induced peripheral neuropathy outcome measures standardization study: from consensus to the first validity and reliability findings. Ann Oncol 24(2):454–462

    Article  CAS  PubMed  Google Scholar 

  31. Mielke S, Sparreboom A, Mross K (2006) Peripheral neuropathy: a persisting challenge in paclitaxel-based regimes. Eur J Cancer 42(1):24–30

    Article  CAS  PubMed  Google Scholar 

  32. Lee JJ, Swain SM (2006) Peripheral neuropathy induced by microtubule-stabilizing agents. J Clin Oncol 24(10):1633–1642

    Article  CAS  PubMed  Google Scholar 

  33. Seretny M, Currie GL, Sena ES, Ramnarine S, Grant R, MacLeod MR, Colvin LA, Fallon M (2014) Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 155(12):2461–2470

    Article  PubMed  Google Scholar 

  34. De Iuliis F, Taglieri L, Salerno G, Lanza R, Scarpa S (2015) Taxane induced neuropathy in patients affected by breast cancer: literature review. Crit Rev Oncol Hematol 96(1):34–45

    Article  PubMed  Google Scholar 

  35. Carlson K, Ocean AJ (2011) Peripheral neuropathy with microtubule-targeting agents: occurrence and management approach. Clin Breast Cancer 11(2):73–81

    Article  CAS  PubMed  Google Scholar 

  36. Swain SM, Arezzo JC (2008) Neuropathy associated with microtubule inhibitors: diagnosis, incidence, and management. Clin Adv Hematol Oncol 6(6):455–467

    PubMed  Google Scholar 

  37. Argyriou AA, Koltzenburg M, Polychronopoulos P, Papapetropoulos S, Kalofonos HP (2008) Peripheral nerve damage associated with administration of taxanes in patients with cancer. Crit Rev Oncol Hematol 66(3):218–228

    Article  PubMed  Google Scholar 

  38. Hikino H, Kawashima M, Yamada T, Ozaki N (2006) Motor dominant neuropathy induced by adjuvant therapy with adriamycin and cyclophosphamide followed by dose-dense paclitaxel in a breast cancer patient. Int J Clin Oncol 11(4):332–335

    Article  PubMed  Google Scholar 

  39. Augusto C, Pietro M, Cinzia M, Sergio C, Sara C, Luca G, Scaioli V (2008) Peripheral neuropathy due to paclitaxel: study of the temporal relationships between the therapeutic schedule and the clinical quantitative score (QST) and comparison with neurophysiological findings. J Neurooncol 86(1):89–99

    Article  CAS  PubMed  Google Scholar 

  40. Molassiotis A, Cheng HL, Lopez V, Au JSK, Chan A, Bandla A, Leung KT, Li YC, Wong KH, Suen LKP et al (2019) Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC Cancer 19(1):132

    Article  PubMed  PubMed Central  Google Scholar 

  41. Smith EML, Banerjee T, Yang JJ, Bridges CM, Alberti P, Sloan JA, Loprinzi C (2019) Psychometric testing of the European Organisation for research and treatment of cancer quality of life questionnaire-chemotherapy-induced peripheral neuropathy 20-item scale using pooled chemotherapy-induced peripheral neuropathy outcome measures standardization and alliance for clinical trials in oncology A151408 study data. Cancer Nurs 42(3):179–189

    Article  PubMed  Google Scholar 

  42. Smith EML, Zanville N, Kanzawa-Lee G, Donohoe C, Bridges C, Loprinzi C, Le-Rademacher J, Yang JJ (2019) Rasch model-based testing of the European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire-Chemotherapy-Induced Peripheral Neuropathy (QLQ-CIPN20) using Alliance for Clinical Trials in Oncology (Alliance) A151408 study data. Supportive Care Cancer 27(7):2599–2608

    Article  Google Scholar 

  43. Kieffer JM, Postma TJ, van de Poll-Franse L, Mols F, Heimans JJ, Cavaletti G, Aaronson NK (2017) Evaluation of the psychometric properties of the EORTC chemotherapy-induced peripheral neuropathy questionnaire (QLQ-CIPN20). Qual Life Res 26(11):2999–3010

    Article  PubMed  Google Scholar 

  44. Lavoie Smith EM, Barton DL, Qin R, Steen PD, Aaronson NK, Loprinzi CL (2013) Assessing patient-reported peripheral neuropathy: the reliability and validity of the European Organization for Research and Treatment of Cancer QLQ-CIPN20 questionnaire. Qual Life Res 22(10):2787–2799

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ekholm E, Rantanen V, Antila K, Salminen E (1997) Paclitaxel changes sympathetic control of blood pressure. Eur J Cancer 33(9):1419–1424

    Article  CAS  PubMed  Google Scholar 

  46. Hertz DL (2019) Concerns regarding use of patient-reported outcomes in biomarker studies of chemotherapy-induced peripheral neuropathy. Pharmacogenomics J 19(5):411–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nyrop KA, Deal AM, Reeder-Hayes KE, Shachar SS, Reeve BB, Basch E, Choi SK, Lee JT, Wood WA, Anders CK et al (2019) Patient-reported and clinician-reported chemotherapy-induced peripheral neuropathy in patients with early breast cancer: current clinical practice. Cancer 125(17):2945–2954

    Article  CAS  PubMed  Google Scholar 

  48. Di Maio M, Basch E, Bryce J, Perrone F (2016) Patient-reported outcomes in the evaluation of toxicity of anticancer treatments. Nat Rev Clin Oncol 13(5):319–325

    Article  PubMed  CAS  Google Scholar 

  49. Kuroi K, Shimozuma K, Ohashi Y, Hisamatsu K, Masuda N, Takeuchi A, Aranishi T, Morita S, Ohsumi S, Hausheer FH (2009) Prospective assessment of chemotherapy-induced peripheral neuropathy due to weekly paclitaxel in patients with advanced or metastatic breast cancer (CSP-HOR 02 study). Supportive Care Cancer 17(8):1071–1080

    Article  Google Scholar 

  50. Chen C-S, Kim J, Garg N, Guntupalli H, Jagsi R, Griggs JJ, Sabel M, Dorsch MP, Callaghan BC, Hertz DL (2021) Chemotherapy-induced peripheral neuropathy detection via a smartphone app: cross-sectional pilot study. JMIR Mhealth Uhealth 9(7):e27502

    Article  PubMed Central  Google Scholar 

  51. Budd GT, Barlow WE, Moore HC, Hobday TJ, Stewart JA, Isaacs C, Salim M, Cho JK, Rinn KJ, Albain KS et al (2015) SWOG S0221: a phase III trial comparing chemotherapy schedules in high-risk early-stage breast cancer. J Clin Oncol 33(1):58–64

    Article  PubMed  Google Scholar 

Download references

Funding

This research was funded in part by the National Center for Advancing Translation Sciences (NCATS National Cancer 2UL1TR000433, KL2TR000434) (DLH) and National Cancer Institute (NCI P30CA046592) through use of the UM Pharmacokinetics Core. Dr. Kathleen Stringer’s effort was supported, in part, by a Grant from the National Institute of General Medical Sciences (NIGMS R35 GM136312). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH, NCATS, NCI, or NIGMS.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data analyses were performed by CSC. The first draft of the manuscript was written by CSC and DLH, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Daniel L. Hertz.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by Institutional Review Boards of the University of Michigan Medical School (IRBMED) (HUM00086259).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 354 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CS., Smith, E.M.L., Stringer, K.A. et al. Co-occurrence and metabolic biomarkers of sensory and motor subtypes of peripheral neuropathy from paclitaxel. Breast Cancer Res Treat 194, 551–560 (2022). https://doi.org/10.1007/s10549-022-06652-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-022-06652-x

Keywords

Navigation