Skip to main content

Advertisement

Log in

Emerging immunotherapeutic strategies for the treatment of breast cancer

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Immunotherapy has resulted in unprecedented gains in long-term outcomes for many cancer types and has revolutionized the treatment landscape of solid tumor oncology. Checkpoint inhibition in combination with chemotherapy has proven to be effective for the treatment of a subset of advanced triple-negative breast cancer in the first-line setting. This initial success is likely just the tip of the iceberg as there is much that remains unknown about how to best harness the immune system as a therapeutic strategy in all breast cancer subtypes. Therefore, numerous ongoing studies are currently underway to evaluate the safety and efficacy of immunotherapy in breast cancer. In this review, we will discuss emerging immunotherapeutic strategies for breast cancer treatment including the following: (1) Intratumoral therapies, (2) Anti-tumor vaccines, (3) B-specific T-cell engagers, and (4) Chimeric antigen receptor T-cell therapy, and (5) Emerging systemic immunotherapy strategies. For each topic, we will review the existing preclinical and clinical literature, discuss ongoing clinical trials, and highlight future directions in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

N/A.

Code availability

N/A.

References

  1. Oglesby A, Algazi AP, Daud AI (2019) Intratumoral and combination therapy in melanoma and other skin cancers. Am J Clin Dermatol 20:781–796

    PubMed  Google Scholar 

  2. Benevento R, Santoriello A, Perna G, Canonico S (2012) Electrochemotherapy of cutaneous metastasis from breast cancer in elderly patients: a preliminary report. BMC Surg 12:1–3

    Google Scholar 

  3. Matthiessen LW et al (2012) Electrochemotherapy for large cutaneous recurrence of breast cancer: a phase II clinical trial. Acta Oncol 51:713–721

    PubMed  Google Scholar 

  4. Rebersek M, Cufer T, Cemazar M, Kranjc S, Sersa G (2004) Electrochemotherapy with cisplatin of cutaneous tumor lesions in breast cancer. Anticancer Drugs 15:593–597

    CAS  PubMed  Google Scholar 

  5. Toomey, P. et al. Intralesional Injection of Rose Bengal Induces a Systemic Tumor-Specific Immune Response in Murine Models of Melanoma and Breast Cancer. PLOS ONE 8, e68561 (2013).

  6. Bommareddy PK, Patel A, Hossain S, Kaufman HL (2017) Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am J Clin Dermatol 18:1–15

    PubMed  Google Scholar 

  7. Liu BL et al (2003) ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther 10:292–303

    CAS  PubMed  Google Scholar 

  8. Johnson DB, Puzanov I, Kelley MC (2015) Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy 7:611–619

    CAS  PubMed  Google Scholar 

  9. Kohlhapp FJ, Kaufman HL (2016) Molecular pathways: mechanism of action for Talimogene Laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res 22:1048–1054

    CAS  PubMed  Google Scholar 

  10. Andtbacka RHI et al (2015) Talimogene Laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol Off J Am Soc Clin Oncol 33:2780–2788

    CAS  Google Scholar 

  11. Andtbacka RHI et al (2019) Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III–IV melanoma. J Immunother Cancer 7:145

    PubMed  PubMed Central  Google Scholar 

  12. Soliman H et al (2021) A phase I trial of Talimogene Laherparepvec in combination with neoadjuvant chemotherapy for the treatment of nonmetastatic triple-negative breast cancer. Clin Cancer Res 27:1012–1018

    CAS  PubMed  Google Scholar 

  13. Guiducci C et al (2006) Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J Exp Med 203:1999–2008

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jukkola-Vuorinen A et al (2009) Toll-like receptor-9 expression is inversely correlated with estrogen receptor status in breast cancer. J Innate Immun 1:59–68

    CAS  PubMed  Google Scholar 

  15. Milhem MM et al (2019) Phase 1b/2, open label, multicenter, study of the combination of SD-101 and pembrolizumab in patients with advanced melanoma who are naïve to anti-PD-1 therapy. J Clin Oncol 37:9534–9534

    Google Scholar 

  16. Ribas A, Milhem M, Hoimes C, Amin A (2018) Phase 1b/2, open label, multicenter, study of the combination of SD-101 and pembrolizumab in patients with advanced melanoma who are naïve to anti-PD-1 therapy

  17. Tugues S et al (2015) New insights into IL-12-mediated tumor suppression. Cell Death Differ 22:237–246

    CAS  PubMed  Google Scholar 

  18. Canton DA et al (2017) Melanoma treatment with intratumoral electroporation of tavokinogene telseplasmid (pIL-12, tavokinogene telseplasmid). Immunotherapy 9:1309–1321

    CAS  PubMed  Google Scholar 

  19. Algazi A et al (2020) Intratumoral delivery of tavokinogene telseplasmid yields systemic immune responses in metastatic melanoma patients. Ann Oncol Off J Eur Soc Med Oncol 31:532–540

    CAS  Google Scholar 

  20. Telli M et al P3-09-04. Phase 2, open-label study of intratumoral tavokinogene telseplasmid (tavo) plus electroporation in combination with intravenous pembrolizumab therapy in patients with inoperable locally advanced or metastatic triple-negative breast cancer (mTNBC) (KEYNOTE- 890/OMS-I141)

  21. Tchou J et al (2017) Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol Res 5:1152–1161

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu L, Liu Y, Yan X, Zhou C, Xiong X (2020) The role of granulocyte colony-stimulating factor in breast cancer development: a review. Mol Med Rep 21:2019–2029

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bretscher V et al (2000) GM-CSF expression by tumor cells correlates with aggressivity and with stroma reaction formation. J Submicrosc Cytol Pathol 32:525–533

    CAS  PubMed  Google Scholar 

  24. Mittendorf EA et al (2019) Efficacy and safety analysis of nelipepimut-S vaccine to prevent breast cancer recurrence: a randomized, multicenter, phase III clinical trial. Clin Cancer Res 25:4248–4254

    CAS  PubMed  Google Scholar 

  25. Peoples GE et al (2008) Combined clinical trial results of a HER2/neu (E75) vaccine for the prevention of recurrence in high-risk breast cancer patients: U.S. Military Cancer Institute Clinical Trials Group study I-01 and I-02. Clin Cancer Res 14:797–803

    CAS  PubMed  Google Scholar 

  26. Mittendorf EA et al (2016) Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide AE37 vaccine in breast cancer patients to prevent recurrence. Ann Oncol 27:1241–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Knutson KL, Schiffman K, Disis ML (2001) Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Invest 107:477–484

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Disis ML, Goodell V, Schiffman K, Knutson KL (2004) Humoral epitope-spreading following immunization with a HER-2/neu peptide based vaccine in cancer patients. J Clin Immunol 24:571–578

    CAS  PubMed  Google Scholar 

  29. Limentani SA et al (2016) A non-randomized dose-escalation Phase I trial of a protein-based immunotherapeutic for the treatment of breast cancer patients with HER2-overexpressing tumors. Breast Cancer Res Treat 156:319–330

    CAS  PubMed  Google Scholar 

  30. Curigliano G et al (2016) A phase I/II trial of the safety and clinical activity of a HER2-protein based immunotherapeutic for treating women with HER2-positive metastatic breast cancer. Breast Cancer Res Treat 156:301–310

    CAS  PubMed  Google Scholar 

  31. Mittendorf EA et al (2016) Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide GP2 vaccine in breast cancer patients to prevent recurrence. Oncotarget 7:66192–66201

    PubMed  PubMed Central  Google Scholar 

  32. Vassilaros S et al. (2013) Up to 15-year clinical follow-up of a pilot Phase III immunotherapy study in stage II breast cancer patients using oxidized mannan–MUC1. https://www.futuremedicine.com, https://doi.org/10.2217/imt.13.126

  33. Miles D et al (2011) Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist 16:1092–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gilewski T et al (2001) Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: a phase I trial. Proc Natl Acad Sci U S A 98:3270–3275

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Domchek SM et al (2007) Telomerase-specific T-cell immunity in breast cancer: effect of vaccination on tumor immunosurveillance. Cancer Res 67:10546–10555

    CAS  PubMed  Google Scholar 

  36. Oka Y et al (2004) Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci U S A 101:13885–13890

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Emens LA et al (2009) Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte-macrophage colony-stimulating factor-secreting breast tumor vaccine: a chemotherapy dose-ranging factorial study of safety and immune activation. J Clin Oncol 27:5911–5918

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen G et al (2014) A feasibility study of cyclophosphamide, trastuzumab, and an allogeneic GM-CSF-secreting breast tumor vaccine for HER-2+ metastatic breast cancer. Cancer Immunol Res 2:949–961

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dols A et al (2003) Vaccination of women with metastatic breast cancer, using a costimulatory gene (CD80)-modified, HLA-A2-matched, allogeneic, breast cancer cell line: clinical and immunological results. Hum Gene Ther 14:1117–1123

    CAS  PubMed  Google Scholar 

  40. Tan AR, Olszanski A, Golan T, Mauro D, Rugo H (2016) Abstract OT1-01-04: A multicenter, phase 1b, first-in-human dose-escalation study of ADXS31-164, a Listeria monocytogenes-LLO immunotherapy, in patients with HER2-expressing solid tumors. Cancer Res. https://doi.org/10.1158/1538-7445

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gulley JL et al (2008) A pilot study to evaluate the safety and clinical outcomes of vaccination with recombinant CEA-MUC-1-TRICOM (PANVAC) poxviral-based vaccines in patients with metastatic carcinoma. Clin Cancer Res 14:3060–3069

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Heery CR et al (2015) A phase 2 randomized trial of docetaxel alone or in combination with a therapeutic cancer vaccine (PANVAC) in patients with metastatic breast cancer. JAMA Oncol 1:1087–1095

    PubMed  PubMed Central  Google Scholar 

  43. Mohebtash M et al (2011) A pilot study of MUC-1/CEA/TRICOM poxviral-based vaccine in patients with metastatic breast and ovarian cancer. Clin Cancer Res 17:7164–7173

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wiedermann U et al (2010) A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase I study. Breast Cancer Res Treat 119:673–683

    CAS  PubMed  Google Scholar 

  45. Guardino A et al (2009) Results of two phase I clinical trials of MVA-BN®-HER2 in HER-2 overexpressing metastatic breast cancer patients. Cancer Res 69:5089–5089

    Google Scholar 

  46. Chung V et al (2019) Evaluation of safety and efficacy of p53MVA vaccine combined with pembrolizumab in patients with advanced solid cancers. Clin Transl Oncol 21:363–372

    CAS  PubMed  Google Scholar 

  47. Tiriveedhi V et al (2013) Mammaglobin-A cDNA vaccination of breast cancer patients induces antigen-specific cytotoxic CD4+ICOShi T cells. Breast Cancer Res Treat 138:109–118

    CAS  PubMed  Google Scholar 

  48. Harzstark A, Small E (2008) Sipuleucel-T for the treatment of prostate cancer. Drugs Today 44(4):271–278. https://doi.org/10.1358/dot.2008.44.4.1212301

    Article  CAS  Google Scholar 

  49. Sharma A et al (2012) HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact DCIS. Cancer 118:4354–4362

    CAS  PubMed  Google Scholar 

  50. Maeng HM et al (2019) Preliminary results of a phase I clinical trial using an autologous dendritic cell cancer vaccine targeting HER2 in patients with metastatic cancer or operated high-risk bladder cancer (NCT01730118). J Clin Oncol 37:2639–2639

    Google Scholar 

  51. Soliman H et al (2018) A phase-1/2 study of adenovirus-p53 transduced dendritic cell vaccine in combination with indoximod in metastatic solid tumors and invasive breast cancer. Oncotarget 9:10110–10117

    PubMed  PubMed Central  Google Scholar 

  52. Svane IM et al (2004) Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study. Cancer Immunol Immunother 53:633–641

    CAS  PubMed  Google Scholar 

  53. Morse MA et al (2003) Immunotherapy with autologous, human dendritic cells transfected with carcinoembryonic antigen mRNA. Cancer Invest 21:341–349

    CAS  PubMed  Google Scholar 

  54. Urrizola A et al (2020) 1029P Addition of dendritic cell vaccines to neoadjuvant chemotherapy in HER2 negative breast cancer patients. Ann Oncol 31:S710

    Google Scholar 

  55. Avigan D et al (2004) Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses. Clin Cancer Res 10:4699–4708

    CAS  PubMed  Google Scholar 

  56. Nisonoff A, Rivers MM (1961) Recombination of a mixture of univalent antibody fragments of different specificity. Arch Biochem Biophys 93:460–462

    CAS  PubMed  Google Scholar 

  57. Weiner LM et al (1993) Binding and cytotoxicity characteristics of the bispecific murine monoclonal antibody 2B1. J Immunol 151:2877–2886

    CAS  PubMed  Google Scholar 

  58. Valone FH et al (1995) Phase Ia/Ib trial of bispecific antibody MDX-210 in patients with advanced breast or ovarian cancer that overexpresses the proto-oncogene HER-2/neu. J Clin Oncol 13:2281–2292

    CAS  PubMed  Google Scholar 

  59. Kiewe P et al (2006) Phase I trial of the trifunctional anti-HER2 × anti-CD3 antibody ertumaxomab in metastatic breast cancer. Clin Cancer Res 12:3085–3091

    CAS  PubMed  Google Scholar 

  60. Kamada H et al (2015) Generation and characterization of a bispecific diabody targeting both EPH receptor A10 and CD3. Biochem Biophys Res Commun 456:908–912

    CAS  PubMed  Google Scholar 

  61. Ts F et al (2017) A CD3-bispecific molecule targeting P-cadherin demonstrates T cell-mediated regression of established solid tumors in mice. Cancer Immunol Immunother CII 67:247–259

    Google Scholar 

  62. Kubo M et al (2018) Catumaxomab with activated T-cells efficiently lyses chemoresistant EpCAM-positive triple-negative breast cancer cell lines. Anticancer Res 38:4273–4279

    CAS  PubMed  Google Scholar 

  63. Root AR et al (2016) Development of PF-06671008, a highly potent anti-P-cadherin/anti-CD3 bispecific DART molecule with extended half-life for the treatment of cancer. Antibodies 5:6

    PubMed Central  Google Scholar 

  64. Lum, L. G. et al. Clinical and immune responses to anti-CD3 x anti-EGFR bispecific antibody armed activated T cells (EGFR BATs) in pancreatic cancer patients. Oncoimmunology 9,.

  65. Messaoudene M et al (2019) T-cell bispecific antibodies in node-positive breast cancer: novel therapeutic avenue for MHC class I loss variants. Ann Oncol 30:934–944

    CAS  PubMed  Google Scholar 

  66. Lum LG et al (2019) Phase II clinical trial using anti-CD3 x anti-HER2 bispecific antibody armed activated T cells (HER2 BATs) for HER2-negative (0–2+) metastatic breast cancer. J Clin Oncol 37:1080–1080

    Google Scholar 

  67. Osta WA et al (2004) EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res 64:5818–5824

    CAS  PubMed  Google Scholar 

  68. Tóth G, Szöllősi J, Abken H, Vereb G, Szöőr Á (2020) A small number of HER2 redirected CAR T cells significantly improves immune response of adoptively transferred mouse lymphocytes against human breast cancer xenografts. Int J Mol Sci 21:1039

    PubMed Central  Google Scholar 

  69. Posey AD et al (2016) Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 44:1444–1454

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Keenan TE, Tolaney SM (2020) Role of immunotherapy in triple-negative breast cancer. J Natl Compr Canc Netw 18:479–489

    CAS  PubMed  Google Scholar 

  71. Workman CJ, Rice DS, Dugger KJ, Kurschner C, Vignali DAA (2002) Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). Eur J Immunol 32:2255–2263

    CAS  PubMed  Google Scholar 

  72. Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH (2016) Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol 34:539–573

    CAS  PubMed  Google Scholar 

  73. Burugu S, Gao D, Leung S, Chia SK, Nielsen TO (2017) LAG-3+ tumor infiltrating lymphocytes in breast cancer: clinical correlates and association with PD-1/PD-L1+ tumors. Ann Oncol 28:2977–2984

    CAS  PubMed  Google Scholar 

  74. Brignone C et al (2010) First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity. J Transl Med 8:71

    PubMed  PubMed Central  Google Scholar 

  75. Duhoux FP et al (2018) Combination of paclitaxel and a LAG-3 fusion protein (eftilagimod alpha), as a first-line chemoimmunotherapy in patients with metastatic breast carcinoma (MBC): final results from the run-in phase of a placebo-controlled randomized phase II. J Clin Oncol. https://doi.org/10.1200/JCO.2018.36.15_suppl.1050

    Article  Google Scholar 

  76. Brignone C, Escudier B, Grygar C, Marcu M, Triebel F (2009) A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin Cancer Res 15:6225–6231

    CAS  PubMed  Google Scholar 

  77. Wang-Gillam A et al (2013) A phase I study of IMP321 and gemcitabine as the front-line therapy in patients with advanced pancreatic adenocarcinoma. Invest New Drugs 31:707–713

    CAS  PubMed  Google Scholar 

  78. Kraman M et al (2020) FS118, a bispecific antibody targeting LAG-3 and PD-L1, enhances T-cell activation resulting in potent antitumor activity. Clin Cancer Res 26:3333–3344

    CAS  PubMed  Google Scholar 

  79. Gauchat JF et al (1993) Human CD40-ligand: molecular cloning, cellular distribution and regulation of expression by factors controlling IgE production. FEBS Lett 315:259–266

    CAS  PubMed  Google Scholar 

  80. Vonderheide RH (2007) Prospect of targeting the CD40 pathway for cancer therapy. Clin Cancer Res 13:1083–1088

    CAS  PubMed  Google Scholar 

  81. Slobodova Z, Ehrmann J, Krejci V, Zapletalova J, Melichar B (2011) Analysis of CD40 expression in breast cancer and its relation to clinicopathological characteristics. Neoplasma 58:189–197

    CAS  PubMed  Google Scholar 

  82. Tutt AL et al (2002) T cell immunity to lymphoma following treatment with anti-CD40 monoclonal antibody. J Immunol Baltim Md 1950(168):2720–2728

    Google Scholar 

  83. Todryk SM et al (2001) CD40 ligation for immunotherapy of solid tumours. J Immunol Methods 248:139–147

    CAS  PubMed  Google Scholar 

  84. Li D-K, Wang W (2020) Characteristics and clinical trial results of agonistic anti-CD40 antibodies in the treatment of malignancies. Oncol Lett 20:176

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Beatty GL et al (2013) A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin Cancer Res 19:6286–6295

    CAS  PubMed  Google Scholar 

  86. Vonderheide RH et al (2013) Phase I study of the CD40 agonist antibody CP-870,893 combined with carboplatin and paclitaxel in patients with advanced solid tumors. Oncoimmunology 2:e23033

    PubMed  PubMed Central  Google Scholar 

  87. Nowak AK et al (2015) A phase 1b clinical trial of the CD40-activating antibody CP-870,893 in combination with cisplatin and pemetrexed in malignant pleural mesothelioma. Ann Oncol 26:2483–2490

    CAS  PubMed  Google Scholar 

  88. Furman RR, Forero-Torres A, Shustov A, Drachman JG (2010) A phase I study of dacetuzumab (SGN-40, a humanized anti-CD40 monoclonal antibody) in patients with chronic lymphocytic leukemia. Leuk Lymphoma 51:228–235

    CAS  PubMed  Google Scholar 

  89. Irenaeus SMM et al (2019) First-in-human study with intratumoral administration of a CD40 agonistic antibody, ADC-1013, in advanced solid malignancies. Int J Cancer 145:1189–1199

    CAS  PubMed  Google Scholar 

  90. Zhang W et al (2020) Advances in anti-tumor treatments targeting the CD47/SIRPα axis. Front Immunol 11:18

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Manna PP, Frazier WA (2004) CD47 mediates killing of breast tumor cells via Gi-dependent inhibition of protein kinase A. Cancer Res 64:1026–1036

    CAS  PubMed  Google Scholar 

  92. Feliz-Mosquea YR et al (2018) Combination of anthracyclines and anti-CD47 therapy inhibit invasive breast cancer growth while preventing cardiac toxicity by regulation of autophagy. Breast Cancer Res Treat 172:69–82

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Willingham SB et al (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A 109:6662–6667

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tsao L-C et al (2019) CD47 blockade augmentation of trastuzumab antitumor efficacy dependent on antibody-dependent cellular phagocytosis. JCI Insight 4:e131882

    PubMed Central  Google Scholar 

  95. Ishikawa-Sekigami T et al (2006) Enhanced phagocytosis of CD47-deficient red blood cells by splenic macrophages requires SHPS-1. Biochem Biophys Res Commun 343:1197–1200

    CAS  PubMed  Google Scholar 

  96. Buatois V et al (2018) Preclinical development of a bispecific antibody that safely and effectively targets CD19 and CD47 for the treatment of B-cell lymphoma and leukemia. Mol Cancer Ther 17:1739–1751

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Advani R et al (2018) CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N Engl J Med 379:1711–1721

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Linch SN, McNamara MJ, Redmond WL (2015) OX40 agonists and combination immunotherapy: putting the pedal to the metal. Front Oncol 5:34

    PubMed  PubMed Central  Google Scholar 

  99. Bartkowiak T, Curran MA (2015) 4–1BB agonists: multi-potent potentiators of tumor immunity. Front Oncol 5:117

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

N/A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem H. Soliman.

Ethics declarations

Conflicts of interest

LAH has no disclosures. VM is an employee of BMS and owns BMS stocks. AJC receives research funding from Merck, Amgen, Puma, and Seagen. HHS consults for Eisai, Seattle Genetics, Immunomedics, PUMA, and Novartis.

Ethical approval

N/A.

Consent to participate

N/A.

Consent for publication

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huppert, L.A., Mariotti, V., Chien, A.J. et al. Emerging immunotherapeutic strategies for the treatment of breast cancer. Breast Cancer Res Treat 191, 243–255 (2022). https://doi.org/10.1007/s10549-021-06406-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06406-1

Keywords

Navigation