Skip to main content

Advertisement

Log in

Methionine restriction exposes a targetable redox vulnerability of triple-negative breast cancer cells by inducing thioredoxin reductase

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Tumor cells are dependent on the glutathione and thioredoxin antioxidant pathways to survive oxidative stress. Since the essential amino acid methionine is converted to glutathione, we hypothesized that methionine restriction (MR) would deplete glutathione and render tumors dependent on the thioredoxin pathway and its rate-limiting enzyme thioredoxin reductase (TXNRD).

Methods

Triple (ER/PR/HER2)-negative breast cancer (TNBC) cells were treated with control or MR media and the effects on reactive oxygen species (ROS) and antioxidant signaling were examined. To determine the role of TXNRD in MR-induced cell death, TXNRD1 was inhibited by RNAi or the pan-TXNRD inhibitor auranofin, an antirheumatic agent. Metastatic and PDX TNBC mouse models were utilized to evaluate in vivo antitumor activity.

Results

MR rapidly and transiently increased ROS, depleted glutathione, and decreased the ratio of reduced glutathione/oxidized glutathione in TNBC cells. TXNRD1 mRNA and protein levels were induced by MR via a ROS-dependent mechanism mediated by the transcriptional regulators NRF2 and ATF4. MR dramatically sensitized TNBC cells to TXNRD1 silencing and the TXNRD inhibitor auranofin, as determined by crystal violet staining and caspase activity; these effects were suppressed by the antioxidant N-acetylcysteine. H-Ras-transformed MCF-10A cells, but not untransformed MCF-10A cells, were highly sensitive to the combination of auranofin and MR. Furthermore, dietary MR induced TXNRD1 expression in mammary tumors and enhanced the antitumor effects of auranofin in metastatic and PDX TNBC murine models.

Conclusion

MR exposes a vulnerability of TNBC cells to the TXNRD inhibitor auranofin by increasing expression of its molecular target and creating a dependency on the thioredoxin pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data from this study are available from the corresponding author upon request. Additional data are available in Supplementary Data.

References

  1. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462. https://doi.org/10.1016/j.cub.2014.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931–947. https://doi.org/10.1038/nrd4002

    Article  CAS  PubMed  Google Scholar 

  3. Bansal A, Simon MC (2018) Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol 217:2291–2298. https://doi.org/10.1083/jcb.201804161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang J, Li X, Han X, Liu R, Fang J (2017) Targeting the thioredoxin system for cancer therapy. Trends Pharmacol Sci 38:794–808. https://doi.org/10.1016/j.tips.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  5. Fath MA, Ahmad IM, Smith CJ, Spence J, Spitz DR (2011) Enhancement of carboplatin-mediated lung cancer cell killing by simultaneous disruption of glutathione and thioredoxin metabolism. Clin Cancer Res 17:6206–6217. https://doi.org/10.1158/1078-0432.CCR-11-0736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC et al (2015) Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27:211–222. https://doi.org/10.1016/j.ccell.2014.11.019

    Article  CAS  PubMed  Google Scholar 

  7. Mandal PK, Schneider M, Kolle P, Kuhlencordt P, Forster H, Beck H et al (2010) Loss of thioredoxin reductase 1 renders tumors highly susceptible to pharmacologic glutathione deprivation. Cancer Res 70:9505–9514. https://doi.org/10.1158/0008-5472.CAN-10-1509

    Article  CAS  PubMed  Google Scholar 

  8. Yan X, Zhang X, Wang L, Zhang R, Pu X, Wu S et al (2019) Inhibition of thioredoxin/thioredoxin reductase induces synthetic lethality in lung cancers with compromised glutathione homeostasis. Cancer Res 79:125–132. https://doi.org/10.1158/0008-5472.CAN-18-1938

    Article  CAS  PubMed  Google Scholar 

  9. Roder C, Thomson MJ (2015) Auranofin: repurposing an old drug for a golden new age. Drugs R D 15:13–20. https://doi.org/10.1007/s40268-015-0083-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao X, Sanderson SM, Dai Z, Reid MA, Cooper DE, Lu M et al (2019) Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature 572:397–401. https://doi.org/10.1038/s41586-019-1437-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghosh S, Forney LA, Wanders D, Stone KP, Gettys TW (2017) An integrative analysis of tissue-specific transcriptomic and metabolomic responses to short-term dietary methionine restriction in mice. PLoS ONE 12:e0177513. https://doi.org/10.1371/journal.pone.0177513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin AH, Chen HW, Liu CT, Tsai CW, Lii CK (2012) Activation of Nrf2 is required for up-regulation of the π class of glutathione S-transferase in rat primary hepatocytes with L-methionine starvation. J Agric Food Chem 60:6537–6545. https://doi.org/10.1021/jf301567m

    Article  CAS  PubMed  Google Scholar 

  13. Pettit AP, Jonsson WO, Bargoud AR, Mirek ET, Peelor FF 3rd, Wang Y et al (2017) Dietary methionine restriction regulates liver protein synthesis and gene expression independently of eukaryotic initiation factor 2 phosphorylation in mice. J Nutr 147:1031–1040. https://doi.org/10.3945/jn.116.246710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Poirson-Bichat F, Goncalves RA, Miccoli L, Dutrillaux B, Poupon MF (2000) Methionine depletion enhances the antitumoral efficacy of cytotoxic agents in drug-resistant human tumor xenografts. Clin Cancer Res 6:643–653

    CAS  PubMed  Google Scholar 

  15. Tsai CW, Lin AH, Wang TS, Liu KL, Chen HW, Lii CK (2010) Methionine restriction up-regulates the expression of the π class of glutathione S-transferase partially via the extracellular signal-regulated kinase-activator protein-1 signaling pathway initiated by glutathione depletion. Mol Nutr Food Res 54:841–850. https://doi.org/10.1002/mnfr.200900083

    Article  CAS  PubMed  Google Scholar 

  16. Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13:572–583. https://doi.org/10.1038/nrc3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sakurai A, Nishimoto M, Himeno S, Imura N, Tsujimoto M, Kunimoto M et al (2005) Transcriptional regulation of thioredoxin reductase 1 expression by cadmium in vascular endothelial cells: role of NF-E2-related factor-2. J Cell Physiol 203:529–537. https://doi.org/10.1002/jcp.20246

    Article  CAS  PubMed  Google Scholar 

  18. Hoffman RM, Erbe RW (1976) High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci USA 73:1523–1527. https://doi.org/10.1073/pnas.73.5.1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Coalson DW, Mecham JO, Stern PH, Hoffman RM (1982) Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine-dependent cancer cells. Proc Natl Acad Sci USA 79:4248–4251. https://doi.org/10.1073/pnas.79.14.4248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stern PH, Hoffman RM (1986) Enhanced in vitro selective toxicity of chemotherapeutic agents for human cancer cells based on a metabolic defect. J Natl Cancer Inst 76:629–639. https://doi.org/10.1093/jnci/76.4.629

    Article  CAS  PubMed  Google Scholar 

  21. Chaturvedi S, Hoffman RM, Bertino JR (2018) Exploiting methionine restriction for cancer treatment. Biochem Pharmacol 154:170–173. https://doi.org/10.1016/j.bcp.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  22. Strekalova E, Malin D, Good DM, Cryns VL (2015) Methionine deprivation induces a targetable vulnerability in triple-negative breast cancer cells by enhancing TRAIL receptor-2 expression. Clin Cancer Res 21:2780–2791. https://doi.org/10.1158/1078-0432.CCR-14-2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Malin D, Strekalova E, Petrovic V, Deal AM, Al Ahmad A, Adamo B et al (2014) αB-crystallin: a novel regulator of breast cancer metastasis to the brain. Clin Cancer Res 20:56–67. https://doi.org/10.1158/1078-0432.CCR-13-1255

    Article  CAS  PubMed  Google Scholar 

  24. Strekalova E, Malin D, Rajanala H, Cryns VL (2017) Metformin sensitizes triple-negative breast cancer to proapoptotic TRAIL receptor agonists by suppressing XIAP expression. Breast Cancer Res Treat 163:435–447. https://doi.org/10.1007/s10549-017-4201-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moyano JV, Evans JR, Chen F, Lu M, Werner ME, Yehiely F et al (2006) αB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 116:261–270. https://doi.org/10.1172/JCI25888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shin S, Wakabayashi N, Misra V, Biswal S, Lee GH, Agoston ES et al (2007) NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Mol Cell Biol 27:7188–7197. https://doi.org/10.1128/MCB.00915-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ye J, Palm W, Peng M, King B, Lindsten T, Li MO et al (2015) GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev 29:2331–2336. https://doi.org/10.1101/gad.269324.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Malin D, Chen F, Schiller C, Koblinski J, Cryns VL (2011) Enhanced metastasis suppression by targeting TRAIL receptor 2 in a murine model of triple-negative breast cancer. Clin Cancer Res 17:5005–5015. https://doi.org/10.1158/1078-0432.CCR-11-0099

    Article  CAS  PubMed  Google Scholar 

  29. Lu M, Strohecker A, Chen F, Kwan T, Bosman J, Jordan VC et al (2008) Aspirin sensitizes cancer cells to TRAIL-induced apoptosis by reducing survivin levels. Clin Cancer Res 14:3168–3176. https://doi.org/10.1158/1078-0432.CCR-07-4362

    Article  CAS  PubMed  Google Scholar 

  30. Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G (2006) Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J 20:1064–1073. https://doi.org/10.1096/fj.05-5568com

    Article  CAS  PubMed  Google Scholar 

  31. Najim N, Podmore ID, McGown A, Estlin EJ (2009) Methionine restriction reduces the chemosensitivity of central nervous system tumour cell lines. Anticancer Res 29:3103–3108

    CAS  PubMed  Google Scholar 

  32. Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM (2016) The integrated stress response. EMBO Rep 17:1374–1395. https://doi.org/10.15252/embr.201642195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. DeNicola GM, Chen PH, Mullarky E, Sudderth JA, Hu Z, Wu D et al (2015) NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet 47:1475–1481. https://doi.org/10.1038/ng.3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miyamoto N, Izumi H, Miyamoto R, Bin H, Kondo H, Tawara A et al (2011) Transcriptional regulation of activating transcription factor 4 under oxidative stress in retinal pigment epithelial ARPE-19/HPV-16 cells. Invest Ophthalmol Vis Sci 52:1226–1234. https://doi.org/10.1167/iovs.10-5775

    Article  CAS  PubMed  Google Scholar 

  35. Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254:7558–7560

    Article  CAS  PubMed  Google Scholar 

  36. Mandal PK, Seiler A, Perisic T, Kolle P, Banjac Canak A, Forster H et al (2010) System x(c)- and thioredoxin reductase 1 cooperatively rescue glutathione deficiency. J Biol Chem 285:22244–22253. https://doi.org/10.1074/jbc.M110.121327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cadenas C, Franckenstein D, Schmidt M, Gehrmann M, Hermes M, Geppert B et al (2010) Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of breast cancer. Breast Cancer Res 12:R44. https://doi.org/10.1186/bcr2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stafford WC, Peng X, Olofsson MH, Zhang X, Luci DK, Lu L et al (2018) Irreversible inhibition of cytosolic thioredoxin reductase 1 as a mechanistic basis for anticancer therapy. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaf7444

    Article  PubMed  PubMed Central  Google Scholar 

  39. Anderson CP, Matthay KK, Perentesis JP, Neglia JP, Bailey HH, Villablanca JG et al (2015) Pilot study of intravenous melphalan combined with continuous infusion L-S, R-buthionine sulfoximine for children with recurrent neuroblastoma. Pediatr Blood Cancer 62:1739–1746. https://doi.org/10.1002/pbc.25594

    Article  CAS  PubMed  Google Scholar 

  40. Bailey HH, Ripple G, Tutsch KD, Arzoomanian RZ, Alberti D, Feierabend C et al (1997) Phase I study of continuous-infusion L-S, R-buthionine sulfoximine with intravenous melphalan. J Natl Cancer Inst 89:1789–1796. https://doi.org/10.1093/jnci/89.23.1789

    Article  CAS  PubMed  Google Scholar 

  41. Durando X, Thivat E, Farges MC, Cellarier E, D’Incan M, Demidem A et al (2008) Optimal methionine-free diet duration for nitrourea treatment: a Phase I clinical trial. Nutr Cancer 60:23–30. https://doi.org/10.1080/01635580701525877

    Article  CAS  PubMed  Google Scholar 

  42. Epner DE, Morrow S, Wilcox M, Houghton JL (2002) Nutrient intake and nutritional indexes in adults with metastatic cancer on a phase I clinical trial of dietary methionine restriction. Nutr Cancer 42:158–166. https://doi.org/10.1207/S15327914NC422_2

    Article  CAS  PubMed  Google Scholar 

  43. Thivat E, Farges MC, Bacin F, D’Incan M, Mouret-Reynier MA, Cellarier E et al (2009) Phase II trial of the association of a methionine-free diet with cystemustine therapy in melanoma and glioma. Anticancer Res 29:5235–5240

    CAS  PubMed  Google Scholar 

  44. Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z et al (2015) Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527:186–191. https://doi.org/10.1038/nature15726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO (2014) Antioxidants accelerate lung cancer progression in mice. Sci Transl Med 6:221ar15. https://doi.org/10.1126/scitranslmed.3007653

    Article  CAS  Google Scholar 

  46. Wiel C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, Yao H et al (2019) BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178(330–345):e22. https://doi.org/10.1016/j.cell.2019.06.005

    Article  CAS  Google Scholar 

  47. α-Tocopherol BCCPSG (1994) The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 330:1029–1035. https://doi.org/10.1056/NEJM199404143301501

    Article  Google Scholar 

  48. Klein EA, Thompson IM Jr, Tangen CM, Crowley JJ, Lucia MS, Goodman PJ et al (2011) Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 306:1549–1556. https://doi.org/10.1001/jama.2011.1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martinez-Chantar ML, Latasa MU, Varela-Rey M, Lu SC, Garcia-Trevijano ER, Mato JM et al (2003) L-methionine availability regulates expression of the methionine adenosyltransferase 2A gene in human hepatocarcinoma cells: role of S-adenosylmethionine. J Biol Chem 278:19885–19890. https://doi.org/10.1074/jbc.M211554200

    Article  CAS  PubMed  Google Scholar 

  50. Shiraki N, Shiraki Y, Tsuyama T, Obata F, Miura M, Nagae G et al (2014) Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab 19:780–794. https://doi.org/10.1016/j.cmet.2014.03.017

    Article  CAS  PubMed  Google Scholar 

  51. Strekalova E, Malin D, Weisenhorn EMM, Russell JD, Hoelper D, Jain A et al (2019) S-adenosylmethionine biosynthesis is a targetable metabolic vulnerability of cancer stem cells. Breast Cancer Res Treat 175:39–50. https://doi.org/10.1007/s10549-019-05146-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang Z, Yip LY, Lee JHJ, Wu Z, Chew HY, Chong PKW et al (2019) Methionine is a metabolic dependency of tumor-initiating cells. Nat Med 25:825–837. https://doi.org/10.1038/s41591-019-0423-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Drs. Nobunao Wakabayashi and Craig Thompson for providing MEFs, Dr. Vadim Pokrovsky for providing methioninase, and to Dr. Mark Burkard, Dr. Dudley Lamming and members of the Cryns lab for their critical reading of the manuscript.

Funding

This work was supported by grants from the Breast Cancer Research Foundation (VLC), V Foundation for Cancer Research (VLC), Wisconsin Partnership Program (VLC), and P30CA14520 core facility support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent L. Cryns.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malin, D., Lee, Y., Chepikova, O. et al. Methionine restriction exposes a targetable redox vulnerability of triple-negative breast cancer cells by inducing thioredoxin reductase. Breast Cancer Res Treat 190, 373–387 (2021). https://doi.org/10.1007/s10549-021-06398-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06398-y

Keywords

Navigation