Skip to main content

Advertisement

Log in

Prevalence and characterization of ATM germline mutations in Chinese BRCA1/2-negative breast cancer patients

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

The ataxia telangiectasia-mutated (ATM) gene is a moderate susceptibility gene for breast cancer. However, little is known about the breast cancer phenotypes associated with ATM mutation. We therefore investigated the spectrum and clinical characteristics of ATM germline mutations in Chinese breast cancer patients.

Methods

A multi-gene panel was performed to screen for ATM germline mutations in 7657 BRCA1/2-negative breast cancer patients. All deleterious mutations were validated by independent polymerase chain reaction (PCR)-Sanger sequencing.

Results

A total of 31 pathogenic mutations in the ATM gene across 30 carriers were identified, and the ATM mutation rate was 0.4% (30/7,657) in this cohort. The majority of the mutations (90.3%, 28/31) were nonsense or frameshift mutations. Of the total ATM mutations, 61.3% (19/31) were novel mutations and 13 recurrent mutations were found. ATM mutations carriers were significantly more likely to have a family history of breast and/or ovarian cancer (26.7% in carriers vs. 8.6% in non-carriers, p < 0.001), as well as a family history of any cancer (60.0% in carriers vs. 31.5% in non-carriers, p = 0.001). In addition, ATM mutations carriers were significantly more likely to have oestrogen receptor (ER)-positive (p = 0.011), progesterone receptor (PR)-positive (p = 0.040), and lymph node-positive breast cancer (p = 0.034).

Conclusions

The prevalence of the ATM mutation is approximately 0.4% in Chinese BRCA1/2-negative breast cancer. ATM mutation carriers are significantly more likely to have a family history of cancer and to develop ER- and/or PR-positive breast cancer or lymph node-positive breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ATM :

The ataxia telangiectasia-mutated gene

ANOVA:

One-way analysis of variance

DSB:

DNA double-strand break

ER:

Oestrogen receptor

FAT:

FRAP-ATM-TRRAP

HER2:

Human epidermal growth factor receptor 2

IHC:

Immunohistochemical

PARP:

Poly (ADP-ribose) polymerase

PCR:

Polymerase chain reaction

PIK:

PI-3 kinase

PR:

Progesterone receptor

SD:

Standard deviation

TNBC:

Triple-negative breast cancer

References

  1. Lavin MF (2008) Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 9(10):759–769. https://doi.org/10.1038/nrm2514

    Article  CAS  PubMed  Google Scholar 

  2. Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14(4):197–210

    Article  CAS  PubMed  Google Scholar 

  3. Tung N, Domchek SM, Stadler Z et al (2016) Counselling framework for moderate-penetrance cancer-susceptibility mutations. Nat Rev Clin Oncol 13(9):581–588. https://doi.org/10.1038/nrclinonc.2016.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Easton DF, Pharoah PD, Antoniou AC et al (2015) Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med 372(23):2243–2257. https://doi.org/10.1056/NEJMsr1501341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thompson ER, Rowley SM, Li N et al (2016) Panel testing for familial breast cancer: calibrating the tension between research and clinical care. J Clin Oncol 34(13):1455–1459. https://doi.org/10.1200/jco.2015.63.7454

    Article  CAS  PubMed  Google Scholar 

  6. Buys SS, Sandbach JF, Gammon A et al (2017) A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer 123(10):1721–1730. https://doi.org/10.1002/cncr.30498

    Article  CAS  PubMed  Google Scholar 

  7. Couch FJ, Shimelis H, Hu C et al (2017) Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncol 3(9):1190–1196. https://doi.org/10.1001/jamaoncol.2017.0424

    Article  PubMed  PubMed Central  Google Scholar 

  8. Southey MC, Goldgar DE, Winqvist R et al (2016) PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS. J Med Genet 53(12):800–811. https://doi.org/10.1136/jmedgenet-2016-103839

    Article  CAS  PubMed  Google Scholar 

  9. Bernstein JL, Teraoka S, Southey MC et al (2006) Population-based estimates of breast cancer risks associated with ATM gene variants c.7271T> G and c.1066-6T> G (IVS10-6T> G) from the Breast Cancer Family Registry. Hum Mutat 27(11):1122–1128. https://doi.org/10.1002/humu.20415

    Article  CAS  PubMed  Google Scholar 

  10. Chenevix-Trench G, Spurdle AB, Gatei M et al (2002) Dominant negative ATM mutations in breast cancer families. J Natl Cancer Inst 94(3):205–215

    Article  PubMed  Google Scholar 

  11. Li J, Jing R, Wei H et al (2018) Germline mutations in 40 cancer susceptibility genes among Chinese patients with high hereditary risk breast cancer. Int J Cancer. https://doi.org/10.1002/ijc.31601

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bueno RC, Canevari RA, Villacis RA et al (2014) ATM down-regulation is associated with poor prognosis in sporadic breast carcinomas. Ann Oncol 25(1):69–75. https://doi.org/10.1093/annonc/mdt421

    Article  CAS  PubMed  Google Scholar 

  13. Feng X, Li H, Dean M et al (2015) Low ATM protein expression in malignant tumor as well as cancer-associated stroma are independent prognostic factors in a retrospective study of early-stage hormone-negative breast cancer. Breast Cancer Res 17:65. https://doi.org/10.1186/s13058-015-0575-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun J, Meng H, Yao L et al (2017) Germline mutations in cancer susceptibility genes in a large series of unselected breast cancer patients. Clin Cancer 23(20):6113–6119. https://doi.org/10.1158/1078-0432.ccr-16-3227

    Article  CAS  Google Scholar 

  15. Yao L, Liu Y, Li Z et al (2011) HER2 and response to anthracycline-based neoadjuvant chemotherapy in breast cancer. Ann Oncol 22(6):1326–1331. https://doi.org/10.1093/annonc/mdq612

    Article  CAS  PubMed  Google Scholar 

  16. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  17. Becker-Catania SG, Chen G, Hwang MJ et al (2000) Ataxia-telangiectasia: phenotype/genotype studies of ATM protein expression, mutations, and radiosensitivity. Mol Genet Metab 70(2):122–133. https://doi.org/10.1006/mgme.2000.2998

    Article  CAS  PubMed  Google Scholar 

  18. Mitui M, Nahas SA, Du LT et al (2009) Functional and computational assessment of missense variants in the ataxia-telangiectasia mutated (ATM) gene: mutations with increased cancer risk. Hum Mutat 30(1):12–21. https://doi.org/10.1002/humu.20805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ziv Y, Bar-Shira A, Pecker I et al (1997) Recombinant ATM protein complements the cellular A–T phenotype. Oncogene 15(2):159–167. https://doi.org/10.1038/sj.onc.1201319

    Article  CAS  PubMed  Google Scholar 

  20. Buzin CH, Gatti RA, Nguyen VQ et al (2003) Comprehensive scanning of the ATM gene with DOVAM-S. Hum Mutat 21(2):123–131. https://doi.org/10.1002/humu.10158

    Article  CAS  PubMed  Google Scholar 

  21. Keimling M, Volcic M, Csernok A et al (2011) Functional characterization connects individual patient mutations in ataxia telangiectasia mutated (ATM) with dysfunction of specific DNA double-strand break-repair signaling pathways. FASEB J 25(11):3849–3860. https://doi.org/10.1096/fj.11-185546

    Article  CAS  PubMed  Google Scholar 

  22. Nakamura K, Du L, Tunuguntla R et al (2012) Functional characterization and targeted correction of ATM mutations identified in Japanese patients with ataxia-telangiectasia. Hum Mutat 33(1):198–208. https://doi.org/10.1002/humu.21632

    Article  CAS  PubMed  Google Scholar 

  23. Kurian AW, Hare EE, Mills MA et al (2014) Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. J Clin Oncol 32(19):2001–2009. https://doi.org/10.1200/jco.2013.53.6607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Micol R, Ben Slama L, Suarez F et al (2011) Morbidity and mortality from ataxia-telangiectasia are associated with ATM genotype. J Allergy Clin Immunol 128(2):382–389.e381. https://doi.org/10.1016/j.jaci.2011.03.052

    Article  PubMed  Google Scholar 

  25. Lin CH, Lin WC, Wang CH et al (2010) Child with ataxia telangiectasia developing acute myeloid leukemia. J Clin Oncol 28(14):e213–e214. https://doi.org/10.1200/jco.2009.25.5067

    Article  PubMed  Google Scholar 

  26. Jacquemin V, Rieunier G, Jacob S et al (2012) Underexpression and abnormal localization of ATM products in ataxia telangiectasia patients bearing ATM missense mutations. Eur J Hum Genet 20(3):305–312. https://doi.org/10.1038/ejhg.2011.196

    Article  CAS  PubMed  Google Scholar 

  27. Magliozzi M, Piane M, Torrente I et al (2006) DHPLC screening of ATM gene in Italian patients affected by ataxia-telangiectasia: fourteen novel ATM mutations. Dis Mark 22(4):257–264

    Article  CAS  Google Scholar 

  28. Susswein LR, Marshall ML, Nusbaum R et al (2016) Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet Med 18(8):823–832. https://doi.org/10.1038/gim.2015.166

    Article  CAS  PubMed  Google Scholar 

  29. Telatar M, Wang Z, Udar N et al (1996) Ataxia-telangiectasia: mutations in ATM cDNA detected by protein-truncation screening. Am J Hum Genet 59(1):40–44

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Teraoka SN, Malone KE, Doody DR et al (2001) Increased frequency of ATM mutations in breast carcinoma patients with early onset disease and positive family history. Cancer 92(3):479–487

    Article  CAS  PubMed  Google Scholar 

  31. Laake K, Jansen L, Hahnemann JM et al (2000) Characterization of ATM mutations in 41 Nordic families with ataxia telangiectasia. Hum Mutat 16(3):232–246. https://doi.org/10.1002/1098-1004(200009)16:3%3C232::aid-humu6%3E3.0.co;2-l

    Article  CAS  PubMed  Google Scholar 

  32. Barone G, Groom A, Reiman A et al (2009) Modeling ATM mutant proteins from missense changes confirms retained kinase activity. Hum Mutat 30(8):1222–1230. https://doi.org/10.1002/humu.21034

    Article  CAS  PubMed  Google Scholar 

  33. Zhang J, Sun J, Chen J et al (2016) Comprehensive analysis of BRCA1 and BRCA2 germline mutations in a large cohort of 5931 Chinese women with breast cancer. Breast Cancer Res Treat 158(3):455–462. https://doi.org/10.1007/s10549-016-3902-0

    Article  CAS  PubMed  Google Scholar 

  34. Thorstenson YR, Roxas A, Kroiss R et al (2003) Contributions of ATM mutations to familial breast and ovarian cancer. Cancer Res 63(12):3325–3333

    CAS  PubMed  Google Scholar 

  35. Renwick A, Thompson D, Seal S et al (2006) ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 38(8):873–875. https://doi.org/10.1038/ng1837

    Article  CAS  PubMed  Google Scholar 

  36. Thompson D, Duedal S, Kirner J et al (2005) Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 97(11):813–822. https://doi.org/10.1093/jnci/dji141

    Article  CAS  PubMed  Google Scholar 

  37. Decker B, Allen J, Luccarini C et al (2017) Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not XRCC2, are associated with increased breast cancer risks. J Med Genet 54(11):732–741. https://doi.org/10.1136/jmedgenet-2017-104588

    Article  CAS  PubMed  Google Scholar 

  38. Lu HM, Li S, Black MH et al (2018) Association of breast and ovarian cancers with predisposition genes identified by large-scale sequencing. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2018.2956

    Article  PubMed  PubMed Central  Google Scholar 

  39. van Os NJ, Roeleveld N, Weemaes CM et al (2016) Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin Genet 90(2):105–117. https://doi.org/10.1111/cge.12710

    Article  CAS  PubMed  Google Scholar 

  40. Marabelli M, Cheng SC, Parmigiani G (2016) Penetrance of ATM gene mutations in breast cancer: a meta-analysis of different measures of risk. Genet Epidemiol 40(5):425–431. https://doi.org/10.1002/gepi.21971

    Article  PubMed  PubMed Central  Google Scholar 

  41. Swift M, Lukin JL (2008) Breast cancer incidence and the effect of cigarette smoking in heterozygous carriers of mutations in the ataxia-telangiectasia gene. Cancer Epidemiol Biomark Prev 17(11):3188–3192. https://doi.org/10.1158/1055-9965.Epi-08-0414

    Article  Google Scholar 

  42. Dombernowsky SL, Weischer M, Allin KH et al (2008) Risk of cancer by ATM missense mutations in the general population. J Clin Oncol 26(18):3057–3062. https://doi.org/10.1200/jco.2007.14.6613

    Article  CAS  PubMed  Google Scholar 

  43. Helgason H, Rafnar T, Olafsdottir HS et al (2015) Loss-of-function variants in ATM confer risk of gastric cancer. Nat Genet 47(8):906–910. https://doi.org/10.1038/ng.3342

    Article  CAS  PubMed  Google Scholar 

  44. Daly MB, Pilarski R, Berry M et al NCCN Clinical practice guidelines in oncology. In: Genetic/Familial high-risk assessment: breast and ovarian version1.2018. Accessed 17 June 2018

  45. Renault AL, Mebirouk N, Fuhrmann L et al (2018) Morphology and genomic hallmarks of breast tumours developed by ATM deleterious variant carriers. Breast Cancer Res 20(1):28. https://doi.org/10.1186/s13058-018-0951-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Choi M, Kipps T, Kurzrock R (2016) ATM Mutations in cancer: therapeutic implications. Mol Cancer Ther 15(8):1781–1791. https://doi.org/10.1158/1535-7163.Mct-15-0945

    Article  CAS  PubMed  Google Scholar 

  47. Williamson CT, Muzik H, Turhan AG et al (2010) ATM deficiency sensitizes mantle cell lymphoma cells to poly(ADP-ribose) polymerase-1 inhibitors. Mol Cancer Ther 9(2):347–357. https://doi.org/10.1158/1535-7163.Mct-09-0872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kubota E, Williamson CT, Ye R et al (2014) Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines. Cell Cycle 13(13):2129–2137. https://doi.org/10.4161/cc.29212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gilardini Montani MS, Prodosmo A, Stagni V et al (2013) ATM-depletion in breast cancer cells confers sensitivity to PARP inhibition. J Exp Clin Cancer Res 32:95. https://doi.org/10.1186/1756-9966-32-95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weston VJ, Oldreive CE, Skowronska A et al (2010) The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood 116(22):4578–4587. https://doi.org/10.1182/blood-2010-01-265769

    Article  CAS  PubMed  Google Scholar 

  51. Bang YJ, Im SA, Lee KW et al (2015) Randomized, double-blind phase II trial with prospective classification by atm protein level to evaluate the efficacy and tolerability of olaparib plus paclitaxel in patients with recurrent or metastatic gastric cancer. J Clin Oncol 33(33):3858–3865. https://doi.org/10.1200/jco.2014.60.0320

    Article  CAS  PubMed  Google Scholar 

  52. Mateo J, Carreira S, Sandhu S et al (2015) DNA-Repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373(18):1697–1708. https://doi.org/10.1056/NEJMoa1506859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (81772824, 81773209 and 81372832).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Zhang or Yuntao Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was conducted in accordance with Helsinki Declaration, and was approved by the Research Ethics Committee of Peking University Cancer Hospital.

Informed consent

Written informed consent was obtained from all participants.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 70 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Ouyang, T., Li, J. et al. Prevalence and characterization of ATM germline mutations in Chinese BRCA1/2-negative breast cancer patients. Breast Cancer Res Treat 174, 639–647 (2019). https://doi.org/10.1007/s10549-018-05124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-05124-5

Keywords

Navigation