Skip to main content

Advertisement

Log in

Leveraging the variable natural history of ductal carcinoma in situ (DCIS) to select optimal therapy

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Ductal carcinoma in situ (DCIS) is a non-obligate precursor to invasive ductal carcinoma. The authors sought to discuss the evidence suggesting that not all DCIS will progress to invasive disease if left untreated.

Results

Four lines of evidence align to suggest that not all of this in-situ disease progresses to invasive cancer: its prevalence on screening mammography, studies of missed diagnoses, incidental findings in autopsy specimens, and large retrospective reviews of those treated with excision alone.

Conclusion

A clearer understanding of the variable history of DCIS coupled with advances in genomic profiling of the disease holds the promise of reducing widespread over-treatment of this non-invasive cancer. Additionally, identification of higher risk of recurrence subsets may select patients for whom more aggressive treatment may be appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Francis A, Thomas J, Fallowfield L, Wallis M (2015) Addressing overtreatment of screen detected DCIS: the LORIS trial. Eur J Cancer 51:2296–2303

    Article  PubMed  Google Scholar 

  2. Ernster V, Barclay J (1997) Increases in ductal carcinoma in situ (DCIS) of the breast in relation to mammography: a dilemma. J Natl Cancer Inst Monogr 22:151–156

    Article  Google Scholar 

  3. Wellings S, Jensen H (1973) On the origin and progression of ductal carcinoma in the human breast. J Natl Cancer Inst 50:1111–1118

    Article  CAS  PubMed  Google Scholar 

  4. Page D, Dupont W, Rogers L, Jensen R et al (1995) Continued local recurrence of carcinoma 15–25 years after a diagnosis of low grade ductal carcinoma in situ of the breast treated only by biopsy. Cancer 76:1197–1200

    Article  CAS  PubMed  Google Scholar 

  5. Dupont W, Page D (1985) Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med 312:146–151

    Article  CAS  PubMed  Google Scholar 

  6. Tavassoli F (1998) Ductal carcinoma in situ: introduction of the concept of ductal intraepithelial neoplasia. Mod Pathol 11:140–154

    CAS  PubMed  Google Scholar 

  7. McCaffery K, Nickel B, Moynihan R, Hersch J (2015) How different terminology for ductal carcinoma in situ impacts women’s concern and treatment preferences: a randomised comparison within a national community survey. BMJ Open 5:e008094

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bartlett J, Nofech-Moses S, Rakovitch E (2014) Ductal carcinoma in situ of the breast: can biomarkers improve current management? Clin Chem 60:60–67

    Article  CAS  PubMed  Google Scholar 

  9. Thompson A, Brennan K, Cox A, Gee J et al (2008) Evaluation of the current knowledge limitations in breast cancer research: a gap analysis. Breast Cancer Res 10:R26

    Article  PubMed  PubMed Central  Google Scholar 

  10. Leonard G, Swain S (2004) Ductal carcinoma in situ, complexities and challenges. J Natl Cancer Inst 96:906–920

    Article  PubMed  Google Scholar 

  11. Aubele M, Mattis A, Zitzelsberger H, Walch A et al (1999) Intratumoral heterogeneity in breast carcinoma revealed by laser-microdissection and comparative genomic hybridization. Cancer Genet Cytogenet 110:94–102

    Article  CAS  PubMed  Google Scholar 

  12. Aubele M, Cummings M, Walch A, Zitzelsberger H (2000) Heterogeneous chromosomal aberrations in intraductal breast lesions adjacent to invasive carcinoma. Anal Cell Pathol 20:17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aubele M, Mattis A, Zitzelsberger H, Walch A (2000) Extensive ductal carcinoma in situ with small foci of invasive ductal carcinoma: evidence of genetic resemblance by CGH. Int J Cancer 85:82–86

    Article  CAS  PubMed  Google Scholar 

  14. Foschini M, Morandi L, Leonardi E, Flamminio F (2013) Genetic clonal mapping of in situ and invasive ductal carcinoma indicates the field cancerization phenomenon in the breast. Hum Pathol 44:1310–1319

    Article  CAS  PubMed  Google Scholar 

  15. Luzzi V, Holtschlag V, Watson MA (2001) Expression profiling of ductal carcinoma in situ by laser capture microdissection and high-density oligonucleotide arrays. Am J Pathol 158:2005–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reis-Filho J, Lakhani S (2003) The diagnosis and management of pre-invasive breast disease: genetic alterations in pre-invasive lesions. Breast Cancer Res 5:313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Werner M, Mattis A, Aubele M, Cummings A et al (1999) 20q13.2 amplification in intraductal hyperplasia adjacent to in situ and invasive ductal carcinoma of the breast. Virchows Arch 435:469–472

    Article  CAS  PubMed  Google Scholar 

  18. Westbury C, Reis-Filho J, Dexter T, Mahler-Araujo B et al (2009) Genome-wide transcriptomic profiling of microdissected human breast tissue reveals differential expression of KIT (c-Kit, CD117) and oestrogen receptor-alpha (ERalpha) in response to therapeutic radiation. J Pathol 219:131–140

    Article  CAS  PubMed  Google Scholar 

  19. Ghazani A, Arneson N, Warren K, Pintilie M et al (2007) Genomic alterations in sporadic synchronous primary breast cancer using array and metaphase comparative genomic hybridization. Neoplasia 9:511–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hernandez L, Wilkerson P, Lambros M, Campion-Flora A (2012) Genomic and mutational profiling of ductal carcinomas in situ and matched adjacent invasive breast cancers reveals intra-tumour genetic heterogeneity and clonal selection. J Pathol 227:42–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim S, Jung S, Kim M, Baek I et al (2015) Genomic differences between pure ductal carcinoma in situ and synchronous ductal carcinoma in situ with invasive breast cancer. Oncotarget 6:7597–7607

    PubMed  PubMed Central  Google Scholar 

  22. Kroigard A, Larsen M, Laenkholm A, Knoop A et al (2015) Clonal expansion and linear genome evolution through breast cancer progression from pre-invasive stages to asynchronous metastasis. Oncotarget 6:5634–5649

    Article  PubMed  PubMed Central  Google Scholar 

  23. Koboldt D, Steinberg K, Larson D, Wilson R et al (2013) The next-generation sequencing revolution and its impact on genomics. Cell 155:27–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Newburger D, Kashef-Haghighi D, Weng Z, Salari R et al (2013) Genome evolution during progression to breast cancer. Genome Res 23:1097–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yates L, Gerstung M, Knappskog S, Desmet C et al (2015) Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat Med 21:751–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Macklin P (2012) Essential ductal carcinoma in situ (DCIS) pathobiology for modelers. http://www.mathcancer.org/files/tutorials/biology/Macklin_DCIS_biology_tutorial_2012_v1.pdf. Accessed 1 Aug 2017

  27. Ernster V, Barclay J, Kerlikowske K, Wilkie H et al (2000) Mortality among women with ductal carcinoma in situ of the breast in the population-based surveillance, epidemiology and end results program. Arch Intern Med 160:953–958

    Article  CAS  PubMed  Google Scholar 

  28. Schopper D, de Wolf C (2007) Breast cancer screening by mammography: international evidence and the situation in Switzerland. Krebsliga Schweiz/Oncosuisse. http://www.swisscancer.ch/stellungnahmen/mammografie. Accessed 1 Aug 2017

  29. Biller-Adorno N, Juni P (2014) Abolishing mammography screening programs? A view from the Swiss medical board. N Engl J Med 370:1965–1967

    Article  Google Scholar 

  30. Berger N, Schwizer S, Varga Z, Rageth C et al (2016) Assessment of the extent of microcalcifications to predict the size of a ductal carcinoma in situ: comparison between tomosynthesis and conventional mammography. Clin Imaging 50(6):1269–1273

    Article  Google Scholar 

  31. Nielsen M, Jensen J, Anderson J (1984) Precancerous and cancerous breast lesions during lifetime and at autopsy. A study of 83 women. Cancer 54:612–615

    Article  CAS  PubMed  Google Scholar 

  32. Welch H, Black W (1997) Using autopsy series to estimate the disease “reservoir” for ductal carcinoma in situ of the breast: how much more breast cancer can we find? Ann Intern Med 127:1023–1028

    Article  CAS  PubMed  Google Scholar 

  33. Rosen P, Snyder R, Foote F, Wallace T (1970) Detection of occult carcinoma in the apparently benign breast biopsy through specimen radiography. Cancer 26:944–952

    Article  CAS  PubMed  Google Scholar 

  34. Fong J, Kurniawan E, Rose A, Mou A (2011) Outcomes of screening-detected ductal carcinoma in situ treated with wide excision along. Ann Surg Oncol 18:3778

    Article  PubMed  Google Scholar 

  35. Van Zee K, Subhedar P, Olcese C, Patil S et al (2015) Relationship between margin width and recurrence of ductal carcinoma in situ: analysis of 2996 women treated with breast conserving surgery for 30 years. Ann Surg 262(4):623–631

    PubMed  Google Scholar 

  36. Wapnir I. Dignam J, Fisher B, Mamounas E et al (2011) Long-term outcomes of invasive ipsilateral breast tumor recurrences after lumpectomy in NSABP B-17 and B-24 randomized clinical trials for DCIS. J Natl Cancer Inst 103(6):478–488

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fisher B, Dignam J, Wolmark N et al (1998) Lumpectomy and radiation therapy for the treatment of intraductal breast cancer: findings from the national surgical adjuvant breast and bowel project B-17. J Clin Oncol 16:441–452

    Article  CAS  PubMed  Google Scholar 

  38. Taylor C, Correa C, Duane F, Aznar M et al (2017) Estimating the risks of breast cancer radiotherapy: evidence from modern radiation doses to the lungs and heart and from previous randomized trials. J Clin Oncol 35(15):1641–1649

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jackson S, Frederick P, Pepe M, Nelson H et al (2017) Diagnostic reproducibility: what happens when the same pathologist interprets the same breast biopsy specimen at two points in time? Ann Surg Onc 24(5):1234–1241

    Article  Google Scholar 

  40. Amin M, Greene F, Edge S, Compton C et al (2017) The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA 67:93–99

    PubMed  Google Scholar 

  41. Petkov V, Miller D, Howlader N, Gliner N et al (2016) Breast-cancer-specific mortality in patients treated based on the 21-gene assay: a SEER population-based study. Breast Cancer 2(16017):1–9

    Google Scholar 

  42. Sparano J, Gray R, Makower D, Pritchard K (2015) Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med 373(21):2005–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stemmer S, Steiner M, Rizel S, Soussan-Gutman L et al (2016) Real -life analysis evaluating 1594 N0/Nmic breast cancer patients for whom treatment decisions incorporated the 21-gene recurrence score result: 5-year KM estimate for breast cancer specific survival with recurrence score results ≤ 30 is> 98%. Cancer Res 76(4S):P5–P08

    Google Scholar 

  44. Nitz U, Gluz O, Christgen M, Clemmons M et al (2017) Reducing chemotherapy use in clinically high-risk, genomically low-risk pN0 and pN1 early breast cancer patients: five-year data from the prospective, randomised phase 3 West German Study Group (WSG) PlanB trial. Breast Cancer Res Treat 165:573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Solin L, Gray R, Baehner F, Butler S et al (2013) A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J Natl Cancer Inst 105(10):701–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rakovitch E, Nofech-Mozes S, Hanna W, Baehner F et al (2015) A population-based validation study of the DCIS Score predicting recurrence risk in individuals treated by breast-conserving surgery alone. Breast Cancer Res Treat 152(2):389–398

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rakovitch E, Gray R, Baehner F, Sutradhar R et al (2018) Refined estimates of local recurrence risks by DCIS score adjusting for clinicopathological features: a combined analysis of ECOG-ACRIN E5194 and Ontario DCIS cohort studies. Breast Cancer Res Treat 169:359–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pilewskie M, Olcese C, Eaton A, Patil S et al (2014) Perioperative breast MRI is not associated with lower locoregional recurrence rates in DCIS patients treated with or without radiation. Ann Surg Oncol 21(5):1552–1560

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hill M, Beeman J, Jhala K, Holubar S et al (2017) Relationship of breast MRI to recurrence rates in patients undergoing breast-conservation treatment. Breast Cancer Res Treat 163:615

    Article  PubMed  Google Scholar 

  50. Khan S, Gatsonis C, Snyder B, Lehman C et al (2017) Prospective study of MRI and Multiparameter gene expression assay in DCIS: a trial of the ECOG-ACRIN Cancer Research Group (E4112). J Clin Oncol 35(15_suppl):534–534

    Article  Google Scholar 

  51. American Cancer Society. (2017) Breast Cancer Facts & Figs. 2017–2018. American Cancer Society, Inc., Atlanta. http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2014. Accessed 26 July 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin E. Rojas.

Ethics declarations

Conflict of interest

Dr. Rojas and Dr. Fortes declare that they have no conflicts of interest. Dr. Borgen has received a speaker honorarium from Company Genomic Health, Inc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, K.E., Fortes, T.A. & Borgen, P.I. Leveraging the variable natural history of ductal carcinoma in situ (DCIS) to select optimal therapy. Breast Cancer Res Treat 174, 307–313 (2019). https://doi.org/10.1007/s10549-018-05080-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-05080-0

Keywords

Navigation