Skip to main content

Advertisement

Log in

Adherence to guidelines and breast cancer patients survival: a population-based cohort study analyzed with a causal inference approach

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

There is a lack of real-world studies evaluating the impact on survival of an evidence-based pathway of care in breast cancer. The aim of this work is to investigate the effect of adherence to guidelines on long-term survival for a cohort of Italian breast cancer patients.

Methods

The cohort included incident female breast cancer cases (2007–12), from the registry of the Milan province (Italy), not metastatic at diagnosis and receiving primary surgery. We selected sets of indicators, according to patient and tumor characteristics. We then defined the pathway of care as adherent to guidelines if it fulfilled at least 80% of the indicators. Indicators were measured using different administrative health databases linked on a unique key. A causal inference approach was used, drawing a directed acyclic graph and fitting an inverse probability weighted marginal structural model, accounting for patient’s demographic, socioeconomic and tumor characteristics.

Results

The analysis included 6333 patients, 69% of them were classified as having an adherent care. Mean age was 61 years (standard deviation, 13.6 years) and half of the patients were in Stage I (50%) at diagnosis. Median follow-up time was 5.6 years. Overall, 5-year survival was 90% (95% CI, 89–91%). The estimated risk of death was 30% lower for patients with adherent than nonadherent care (hazard ratio [HR], 0.66; 95% CI, 0.55–0.77).

Conclusions

Our study confirms, in real-world care, the impact on survival of receiving a care pathway adherent to guidelines in non-metastatic breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CI:

Confidence interval

DAG:

Directed acyclic graph

HR:

Hazard ratio

IPW:

Inverse probability weighted

RCT:

Randomized controlled trial

References

  1. Woolf SH (1993) Practice guidelines: a new reality in medicine. III. Impact on patient care. Arch Intern Med 153:2646–2655. doi:10.1001/archinte.1993.00410230060008

    Article  CAS  PubMed  Google Scholar 

  2. Davis D (2006) Assessing and scaling the knowledge pyramid: the good-guideline guide. Can Med Assoc J 174:337–338. doi:10.1503/cmaj.051611

    Article  Google Scholar 

  3. Berlin JA, Golub RM (2014) Meta-analysis as evidence: building a better pyramid. JAMA 312:603. doi:10.1001/jama.2014.8167

    Article  CAS  PubMed  Google Scholar 

  4. Brouwers MC, Kho ME, Browman GP et al (2010) AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ Can Med Assoc J 182:E839–E842. doi:10.1503/cmaj.090449

    Article  Google Scholar 

  5. McMahon AD (2002) Study control, violators, inclusion criteria and defining explanatory and pragmatic trials. Stat Med 21:1365–1376. doi:10.1002/sim.1120

    Article  PubMed  Google Scholar 

  6. Mehta RH, Chen AY, Alexander KP et al (2015) Doing the right things and doing them the right way: association between hospital guideline adherence, dosing safety, and outcomes among patients with acute coronary syndrome. Circulation 131:980–987. doi:10.1161/CIRCULATIONAHA.114.013451

    Article  PubMed  Google Scholar 

  7. Dawes AJ, Sacks GD, Cryer HG et al (2015) Compliance with evidence-based guidelines and interhospital variation in mortality for patients with severe traumatic brain injury. JAMA Surg 150:965–972. doi:10.1001/jamasurg.2015.1678

    Article  PubMed  Google Scholar 

  8. Bristow RE, Chang J, Ziogas A et al (2015) Impact of national cancer institute comprehensive cancer centers on ovarian cancer treatment and survival. J Am Coll Surg 220:940–950. doi:10.1016/j.jamcollsurg.2015.01.056

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schroeck FR, Kaufman SR, Jacobs BL et al (2014) Adherence to performance measures and outcomes among men treated for prostate cancer. J Urol 192:743–748. doi:10.1016/j.juro.2014.03.091

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boland GM, Chang GJ, Haynes AB et al (2013) Association between adherence to national comprehensive cancer network treatment guidelines and improved survival in patients with colon cancer: guideline treatment improves survival. Cancer 119:1593–1601. doi:10.1002/cncr.27935

    Article  PubMed  Google Scholar 

  11. van de Water W, Bastiaannet E, Dekkers OM et al (2012) Adherence to treatment guidelines and survival in patients with early-stage breast cancer by age at diagnosis. Br J Surg 99:813–820. doi:10.1002/bjs.8743

    Article  CAS  PubMed  Google Scholar 

  12. Feinstein AR (1985) Clinical epidemiology: the architecture of clinical research. Saunders, Philadelphia

    Google Scholar 

  13. Cheng SH, Wang CJ, Lin J-L et al (2009) Adherence to quality indicators and survival in patients with breast cancer. Med Care 47:217–225. doi:10.1097/MLR.0b013e3181893c4a

    Article  PubMed  Google Scholar 

  14. Hernan MA (2006) Estimating causal effects from epidemiological data. J Epidemiol Community Health 60:578–586. doi:10.1136/jech.2004.029496

    Article  PubMed  PubMed Central  Google Scholar 

  15. Williamson EJ, Aitken Z, Lawrie J et al (2014) Introduction to causal diagrams for confounder selection. Respirology 19:303–311. doi:10.1111/resp.12238

    Article  PubMed  Google Scholar 

  16. Zagouri F, Liakou P, Bartsch R et al (2015) Discrepancies between ESMO and NCCN breast cancer guidelines: an appraisal. The Breast 24:513–523. doi:10.1016/j.breast.2015.02.031

    Article  PubMed  Google Scholar 

  17. National Collaborating Centre for Cancer (2009) Early and locally advanced breast cancer diagnosis and treatment: full guideline. National Collaborating Centre for Cancer, Cardiff https://www.nice.org.uk/guidance/cg80/resources/early-and-locally-advanced-breast-cancer-diagnosis-and-treatment-975682170565. Accessed 12 Dec 2016

  18. Senkus E, Kyriakides S, Ohno S et al (2015) Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 26:v8–v30. doi:10.1093/annonc/mdv298

    Article  PubMed  Google Scholar 

  19. Bleicher RJ, Ruth K, Sigurdson ER et al (2016) Time to Surgery and Breast Cancer Survival in the United States. JAMA Oncol 2:330–339. doi:10.1001/jamaoncol.2015.4508

    Article  PubMed  PubMed Central  Google Scholar 

  20. Meiers P, Cil T, Guller U, Zuber M (2013) Sentinel lymph node biopsy in early-stage breast cancer patients: improved survival through better staging? Langenbecks Arch Surg Dtsch Ges Für Chir 398:687–690. doi:10.1007/s00423-012-1037-2

    Article  Google Scholar 

  21. Coates AS, Winer EP, Goldhirsch A et al (2015) Tailoring therapies—improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol 26:1533–1546. doi:10.1093/annonc/mdv221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Biglia N, Ponzone R, Bounous VE et al (2014) Role of re-excision for positive and close resection margins in patients treated with breast-conserving surgery. Breast Edinb Scotl 23:870–875. doi:10.1016/j.breast.2014.09.009

    Article  CAS  Google Scholar 

  23. A’Hern RP, Ebbs SR, Baum MB (1988) Does chemotherapy improve survival in advanced breast cancer? A statistical overview. Br J Cancer 57:615–618

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bergh J, Jönsson PE, Glimelius B et al (2001) A systematic overview of chemotherapy effects in breast cancer. Acta Oncol Stockh Swed 40:253–281. doi:10.1080/02841860120784

    Article  CAS  Google Scholar 

  25. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. The Lancet 378:771–784. doi:10.1016/S0140-6736(11)60993-8

    Article  Google Scholar 

  26. Clarke M, Collins R, Darby S et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366:2087–2106. doi:10.1016/S0140-6736(05)67887-7

    Article  CAS  PubMed  Google Scholar 

  27. McGuire SE, Gonzalez-Angulo AM, Huang EH et al (2007) Postmastectomy radiation improves the outcome of patients with locally advanced breast cancer who achieve a pathologic complete response to neoadjuvant chemotherapy. Int J Radiat Oncol Biol Phys 68:1004–1009. doi:10.1016/j.ijrobp.2007.01.023

    Article  PubMed  PubMed Central  Google Scholar 

  28. Grunfeld E, Noorani H, McGahan L et al (2002) Surveillance mammography after treatment of primary breast cancer: a systematic review. Breast Edinb Scotl 11:228–235. doi:10.1054/brst.2001.0404

    Article  CAS  Google Scholar 

  29. Montgomery DA, Krupa K, Cooke TG (2007) Follow-up in breast cancer: does routine clinical examination improve outcome? A systematic review of the literature. Br J Cancer 97:1632–1641. doi:10.1038/sj.bjc.6604065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Greenland S, Pearl J, Robins JM (1999) Causal diagrams for epidemiologic research. Epidemiol Camb Mass 10:37–48

    Article  CAS  Google Scholar 

  31. Textor J, Hardt J, Knüppel S (2011) DAGitty: a graphical tool for analyzing causal diagrams. Epidemiol Camb Mass 22:745. doi:10.1097/EDE.0b013e318225c2be

    Article  Google Scholar 

  32. Andreano A, Anghinoni E, Autelitano M et al (2016) Indicators based on registers and administrative data for breast cancer: routine evaluation of oncologic care pathway can be implemented. J Eval Clin Pract 22:62–70. doi:10.1111/jep.12436

    Article  PubMed  Google Scholar 

  33. Quan H, Li B, Couris CM et al (2011) Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol 173:676–682. doi:10.1093/aje/kwq433

    Article  PubMed  Google Scholar 

  34. Deyo RA, Cherkin DC, Ciol MA (1992) Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol 45:613–619. doi:10.1016/0895-4356(92)90133-8

    Article  CAS  PubMed  Google Scholar 

  35. Caranci N, Biggeri A, Grisotto L et al (2010) L’indice di deprivazione italiano a livello di sezione di censimento: definizione, descrizione e associazione con la mortalità. Epidemiol Prev 34:167

    PubMed  Google Scholar 

  36. Nuova Anagrafe Regionale. http://basidati.agid.gov.it/catalogo/bd?code=154911. Accessed 12 Dec 2016

  37. Hernán M, Robins JM (2017) Causal survival analysis. In: Causal Inference. Chapman & Hall/CRC, Boca Raton, partII, pp 75–77

  38. van Buuren S (2007) Multiple imputation of discrete and continuous data by fully conditional specification. Stat Method Med Res 16:219–242. doi:10.1177/0962280206074463

    Article  Google Scholar 

  39. Rubin DB (2004) Multiple imputation for nonresponse in surveys. John Wiley & Sons, Hoboken

    Google Scholar 

  40. SAS Institute Inc. (2013) SAS/STAT Software, Version 9.4., Cary, NC

  41. Core Team R (2015) R: A Language and Environment for Statistical Computing. R Found Stat Computing, Vienna, Austria

    Google Scholar 

  42. Steuten L, Vrijhoef B, Severens H et al (2006) Are we measuring what matters in health technology assessment of disease management? Systematic literature review. Int J Technol Assess Health Care 22:47–57. doi:10.1017/S0266462306050835

    Article  PubMed  Google Scholar 

  43. Jacobs R, Goddard M (2007) How do performance indicators add up? An examination of composite indicators in public services. Public Money Manag 27:103–110. doi:10.1111/j.1467-9302.2007.00565.x

    Article  Google Scholar 

  44. Shwartz M, Restuccia JD, Rosen AK (2015) Composite measures of health care provider performance: a description of approaches: composite measures of health care provider performance. Milbank Q 93:788–825. doi:10.1111/1468-0009.12165

    Article  PubMed  PubMed Central  Google Scholar 

  45. Reeves D, Campbell SM, Adams J et al (2007) Combining multiple indicators of clinical quality. Med Care 45:489–496. doi:10.1097/MLR.0b013e31803bb479

    Article  PubMed  Google Scholar 

  46. Huisman M, Kunst A, Andersen O et al (2004) Socioeconomic inequalities in mortality among elderly people in 11 European populations. J Epidemiol Community Health 58:468–475. doi:10.1136/jech.2003.010496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Supported by grant RF-2011-02348959 from the Italian Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Andreano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All analyses were performed in compliance with the Italian law on health data protection.

Electronic supplementary material

Appendices

Appendix 1: Sensitivity analyses

1. Results of the IPW marginal structural model, assuming proportional hazards, investigating the association between survival and adherence as a dichotomous variable, using different cut-offs to define adherent care. Results, here and in the following section, are presented as the Hazard ratio (HR) of death for adherent vs. nonadherent patients and their 95% confidence intervals (CI).

Cut-off

% of adherent pts

HR (95% CI)

P

60%

84

0.71 (0.58–0.87)

0.001

70%

77

0.63 (0.52–0.76)

<.001

80% (main analysis)

69

0.66 (0.55–0.77)

<.001

90%

38

0.88 (0.73–1.07)

0.21

2. Results of the IPW marginal structural model, assuming proportional hazards, investigating the association between survival and adherence as a four class ordinal variable (cut-points: 20th percentile, corresponding to 67%; 30th percentile, 75%; 60th percentile, 86%), and as a continuous variable. For the ordinal variable, probability of adherence given potential confounders f(A|L), was estimated using a cumulative logistic regression model with the same covariates of the main analysis, with the exception of all first-degree interactions.

Adherence

HR (95% CI)

P

≤67% vs. > 86%

2.83 (2.29–3.45)

<.001

>67 and ≤ 75% vs. > 86%

1.57 (1.14–2.14)

0.005

>75 and ≤ 86% vs. > 86%

1.01 (0.80–1.28)

0.911

For adherence treated as a continuous variable varying between 0 and 100, f(A|L) is a probability density function and it was estimated through a linear regression model, including the same covariates of the main analysis, and then assuming a normal distribution with constant variance. We estimated an IPW marginal structural model for the association between survival and adherence as a flexible function (restricted cubic spline with three knots at 50, 85 and 90%). The graph illustrates the 8-year probability of death for increasing adherence level, which is higher for low adherence percentage and decreases almost linearly up to 80%. This trend motivated the choice of the cut-off for the main analysis presented in the article.

3. Complete cases analysis: we estimated an IPW marginal structural model for the association between survival and adherence assuming proportional hazards using only patients with all necessary potential confounders in the original dataset (3238). Characteristics of this population are described in the table below. The proportion of adherent patients was 69%. The estimated HR was 0.71 (95%CI, 0.57-0.90, P = 0.004).

 

No. of pts 3238

Adherent

No. 2237

Nonadherent

No. 1001

N

%

N

%

Age

 <50 years

654

29.24

298

29.77

 50–69 years

1037

46.36

362

36.16

 >69 years

546

24.41

341

34.07

Grading

 1

241

10.77

99

9.89

 2

1189

53.15

523

52.25

 3

807

36.08

379

37.86

Stage

 1

1143

51.10

439

43.86

 2

780

34.87

402

40.16

 3

314

14.04

160

15.98

Molecular subtype

 Luminal A

817

36.52

375

37.46

 Luminal B

897

40.10

377

37.66

 Luminal Her2

240

10.73

117

11.69

 Her2 type

96

4.29

56

5.59

 Triple negative

187

8.36

76

7.59

N of positive nodes

 0

1431

63.97

618

61.74

 1–3

524

23.42

260

25.97

 4–9

161

7.20

66

6.59

 ≥10

121

5.41

57

5.69

Charlson index

 0

1733

77.47

755

75.42

 1–2

471

21.05

206

20.58

 ≥3

33

1.48

40

4.00

Deprivation index, quintiles

 I

273

12.20

146

14.59

 II

265

11.85

128

12.79

 III

336

15.02

135

13.49

 IV

525

23.47

208

20.78

 V

838

37.46

384

38.36

Marital status

 Never married

238

10.64

113

11.29

 Married

1627

72.73

635

63.44

 Divorced

88

3.93

47

4.70

 Widow

284

12.70

206

20.58

Education

 None or elementary school

713

31.87

370

36.96

 Middle School

606

27.09

230

22.98

 High School

814

36.39

339

33.87

 College and higher

104

4.65

62

6.19

Employment

 Housewife/unemployed

553

24.72

211

21.08

 Workers

242

10.82

90

8.99

 Office worker/teachers

540

24.14

232

23.18

 Managers and professionals

86

3.84

48

4.80

 Retired

816

36.48

420

41.96

4. Results of the IPW marginal structural model, assuming proportional and non-proportional hazards, investigating the association between survival and adherence as a dichotomous variable, excluding patients > 69 years.

No.

% of adherents

Proportional hazard model

Non proportional hazard model

HR (95% CI)

HR(time since diagnosis) (95% CI)

1 year

2 years

5 years

4559

72

0.73

(0.56–0.95)

0.55

(0.36–0.86)

0.58

(0.43–0.80)

1.04

(0.70–1.56)

  1. HR hazard ratio, CI confidence interval

Appendix 2. Distribution of weights

Distribution of stabilized weights derived from the analysis of 50 imputed datasets (missing data imputed by fully conditional specification using MI SAS procedure). Standard errors (SE) have been pooled according to Rubin [39]. Minimum and maximum are the lowest and highest values found across all datasets.

Stabilized weights

Mean

SE

Median

I Q

III Q

Min

Max

Inverse probability of:

Adherence

1.005

0.001

0.958

0.888

1.079

0.328

7.177

Censoring

1.000

0.000

1.000

0.999

1.000

0.949

1.123

Adherence and censoring

1.005

0.001

0.958

0.888

1.079

0.328

7.184

  1. Q quartile, Min minimum, Max maximum

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreano, A., Rebora, P., Valsecchi, M.G. et al. Adherence to guidelines and breast cancer patients survival: a population-based cohort study analyzed with a causal inference approach. Breast Cancer Res Treat 164, 119–131 (2017). https://doi.org/10.1007/s10549-017-4210-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-017-4210-z

Keywords

Navigation